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Chapter 1 
 
Introduction 
 
Have you ever wondered why you can place your credit card number on Amazon's 
web page to pay online and no eavesdropper could exploit it for his Christmas 
shopping?  
Do you want to know how the British cracked the fantastic ENIGMA machine of the 
Germans in World War II ?  
 
 

 
 
How can we keep our secrets on a computer for ourselves although people may try 
very hard to find out?  
 
Since ancient times, people desiring to transmit messages privately have devised 
methods of encoding messages, so that no person but the intended recipient could read 
the message. The ability to successfully encode and decode messages has played a 
central role in the development of financial markets and in history- altering military 
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turnarounds. We use cryptography to refer to the study of how information can be 
made secretive enough so that bad people can’t read it.  Cryptography is a very 
exciting and developing area of contemporary mathematics, with connections to 
number theory. 

Let us consider a person Alice who would like to send a secret message to another 
person Bob. Perhaps Alice and Bob are childhood friends and are planning a surprise 
birthday party for a mutual friend. Or perhaps Alice and Bob have never met, but 
Alice  would like to send Bob her credit card information so she can pay for 
something Bob is selling. In both cases, Alice and Bob would like to guarantee 
several things:  

(a) Alice would like to ascertain that Bob has received her message;  

(b) Both Alice and Bob would like to know that no one else has seen the secret 
message;  

(c) Bob would like to ascertain that the message he believes to have come from Alice 
has indeed come from Alice. It is not immediately clear how we can guarantee each of 
these except in the case where Alice and Bob actually meet up and Alice whispers the 
message into Bob’s ear. What should they do, however, if they are far apart?  

If they send a message through the postal service, there is a small chance that that an 
eavesdropper might intercept the message before it reaches Bob. Even if they use the 
telephone, or an email, or a text, there is a chance that the intended message and 
information will make its way to the wrong hands. These kinds of questions motivate 
the need to develop methods of encoding and decoding information so that messages 
can be communicated securely.  

Simple ways of encoding messages were known since antiquity. Sometimes letters 
were switched for other letters, or for numbers, and so an eavesdropper quickly 
looking at an encoded message would only see gibberish. However, this approach has 
many limitation. For starters, how would Alice communicate to Bob the scheme 
which she used to encode the message and which he, consequently, will need to 
decode it? If he can determine this by himself, perhaps through some guesswork, then 
what would stop someone else from doing the same? Many somewhat sophisticated 
methods have been developed over the centuries for encoding and decoding secret 
messages, though in  Section  4 we will focus on one that is built on what is called 
modular arithmetic, a system of arithmetic that in some sense only has a finite number 
of numbers.  
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Chapter 2 
 
Modular Arithmetic 
 
Every reader is familiar with arithmetic from the time they are three or four years old. 
It is the study of numbers and various ways in which we can combine them, such as 
through addition and subtraction, multiplication and division. Since even before they 
were in grade school, every reader knew that adding 2 and 2 together gives us 4, and 
can make that calculation now without almost any thinking.  
 
The reader is also likely familiar with another kind of arithmetic, even if we don’t 
always think of it as such. If it is 4 o’clock now, what will the time be in 25 hours? If 
we didn’t know from watches and clocks, we would probably have answered 29 
o’clock. But we are familiar with watches, clocks, and the standard conventions of 
time-keeping, and so every reader would probably have answered the answer with 5 
o’clock. How can we add 25 to 4 and end up with 5? The reason is that in this system 
25 o’clock is the same as 1 o’clock, 26 is the same as 2, and so forth. In many time-
keeping systems, we don’t even use numbers larger than 12, and instead use a.m. and 
p.m. to denote the earlier and latter halves of a 24-hour period. Such systems, that 
“wrap around” after hitting some limit, are called modular arithmetic systems, and 
play an important role both in theoretical and applied mathematics.  
 
Modular arithmetic motivates many questions that don’t arise when studying classic 
arithmetic. For example, in classic arithmetic, adding a positive number a to another 
number b always produces a number larger than b. In modular arithmetic this is not 
always so. 
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For example, if it is now 4 o’clock and we “add” 23 hours, the time will then be 3 
o’clock, which doesn’t appear to be larger than 4 o’clock. In fact, it is no longer clear 
whether it makes sense at all to discuss “larger” and “smaller” in such systems.  
 
This particular example should motivate us think, if even momentarily, about modular 
arithmetic systems and the ways in which they are similar to and different from the 
classical arithmetic with which we are familiar. The next several sections will 
investigate these systems which have a finite number of numbers, and in which 
numbers “wrap around” after going too high.  
  
2.1. The Integers, Divisors, Common Divisors 
 
Recall that the set of integers Z consists of the natural numbers N (1, 2, 3, 4, . . . ), 
along with their negatives  (−1, −2, −3, −4, ...) and zero (0). The set of integers comes 
attached with a number of natural binary operations: addition +, subtraction  −, and 
multiplication ·, which should surely be very familiar.   
 
It is not always possible to divide one integer by another and obtain an integer result: 
there is no integer  n such that 1/2 = n, for example.  Rather than trying to define the 
division operation we will instead focus on the idea of “ divisibility”.   
 
Division. If a ≠ 0, we say that a divides b, written a | b, if there is an integer k with b = 
ka.   
 
Example 2.1.1.  2|4, (−7)|7, and 6|0.   
 
Proposition 2.1.2. There are a number of basic properties of divisibility that follow 
immediately from the definition and properties  of arithmetic:   

1. If a | b, then a | bc for any c.  

 2. If a | b and b | c, then a | c.  

3. If a | b and a | c, then a | (xb+yc) for any x and y.  

4. If a | b and  b | a, then a=±b.  

5. If a | b, and a, b > 0, then a ≤ b.  

6. For any m ≠ 0, a | b is equivalent to (ma) | (mb).   

Proposition 2.1.3. (Quotient With Remainder): If a and b are positive integers, then 
there exist unique integers q and r such that a=qb+r with 0≤r<b. Furthermore, r=0 if 
and only if b | a.   
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2.2. Clock Arithmetic 

 

 

Warm-up  question: If my birthday was on a Tuesday last year, and this year is not a 
leap year, what day of the week will my birthday be on this year?  

How can we begin to understand modular arithmetic?  One way is to think about 
hours on a clock.  Imagine a clock face with numbers from zero to eleven, one hand to 
show the hour (there is no minute hand).  We can add numbers on the clock by 
moving the hand in a clockwise direction.  We can also subtract by moving the hand 
in anti-clockwise direction as follows. 

 
The basic principles of modular arithmetic are often discussed at primary school level, 
except that it is likely to be called clock arithmetic.  The idea is quite simple:  3 hours 
after 10 o’clock is 1 o’clock (because 10 + 3 =13 and we subtract 12).  Similarly, 17 
hours after 9 o’clock will be 2 o’clock, because 17 + 9 = 26 and we must subtract 2 x 
12 = 24 to find where the hand is pointing on the clock face.  And 9 hours before 4 
o’clock is 7 o’clock, since 4 – 9 = - 5, and now we add 12 to get the answer 7, the 
required number on the clock face.  Clock arithmetic thus deals only with the numbers 
from 1 to 12 and whenever a calculation takes you outside that range, you add or 
subtract a multiple of 12 to get back onto the clock face. 

 



	
   8	
  

Clock Arithmetic or a Circle as a Number Line One way to turn a circle into a number 
line is to divide it into twelve equal parts. In this case, one step is usually called one 
hour. 
 

 
Notice that 0 coincides with 12, and as the hour hand moves to the right, 1 coincides 
with 0 coincides with 12. The hour hand moves from 0 to 1, from 13, 2 with 14, and 
so on. The hour hand rotates clockwise which corresponds with numbers 1 to 2, ... 
from 11 to 12 just as it would have on the straight increasing when moving to the 
right on a number line. However, 12 is equivalent to 0 on this number line. However, 
12 equals 0 on this circle, so there it goes circle, which can be written as follows:  

12  ≡ 0 (mod 12). 

This can be read as 12 is congruent to 0 modulo 12. The usual ” = ” sign is reserved 
for the straight number line; we use ” ≡ ” on the circle instead. The symbol “mod 12” 
tells us that the circle is divided into 12 equal parts, so that 12 coincides with 0, 13 
with 1, etc. In the new notation we have:  

12≡0 (mod12), 13≡1 (mod12), ... 23≡11 (mod12) 

 

Example 2.2.1. The hour hand of a clock is pointing to the “10”. After 1000 hours 
have gone by, where is the hour hand pointing to?  

   
The hour hand goes back to “10” every 12 hours (12 hour cycles). So cast out the 
multiples of 12 hours by using mod12 arithmetic.  
1000 mod 12 = 4 hours remainder  

Answer: The hour hand is pointing to 4 hours past its starting point, or 4 hours past 
the “10.” In other words, the hour hand is pointing to the “2.”  
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 When we divide two integers we will have an equation that looks like the following: 
A ⁄ B = Q  remainder  R 

A is the dividend 
B is the divisor 
Q is the quotient 
R is the remainder 

Sometimes, we are only interested in what the remainder is when we divide A  by B. 
For these cases there is an operator called the modulo operator (abbreviated as mod). 
Using the same A, B, Q, and R as above, we would have:  A mod  B = R 
We would say this as A modulo B is equal to R. Where B is referred to as 
the modulus. 
 
Example 2.2.2.  13/5 = 2 remainder 3  that means 13 mod 5 = 3 
 
Now we observe what happens when we increment numbers by one and then divide 
them by 3. 

0/3 = 0 remainder 0 
1/3 = 0 remainder 1 
2/3 = 0 remainder 2 
3/3 = 1 remainder 0 
4/3 = 1 remainder 1 
5/3 = 2 remainder 2 
6/3 = 2 remainder 0 

The remainders start at 0 and increases by 1 each time, until the number reaches one 
less than the number we are dividing by. After that, the sequence repeats. 
By noticing this, we can visualize the modulo operator by using circles. 
Example 2.2.3.   8 mod  4 = ? 
With a modulus of 4 we make a clock with numbers 0, 1, 2, 3. 
We start at 0 and go through 8 numbers in a clockwise sequence 1, 2, 3, 0, 1, 2, 3, 0. 
 

	
  
We ended up at 0 so 8 mod  4 = 0 
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Example 2.2.4.    7 mod 2 =? 

With a modulus of 2 we make a clock with numbers 0, 1. 

We start at 0 and go through 7 numbers in a clockwise sequence 1, 0, 1, 0, 1, 0, 1. 
 

	
  
We ended up at 1 so 7 mod 2 = 1 
 
Example 2.2.5.  −5 mod 3=? 

With a modulus of 3 we make a clock with numbers 0, 1, 2. 

We start at 0 and go through 5 numbers in counter-clockwise sequence (5 is negative) 

2, 1, 0, 2, 1. 

 

 
We ended up at 1 so −5 mod 3= 1 
 
 
2.3. Congruence modula 
 
In regular arithmetic, if two numbers 𝑎 and 𝑏 have the same value then we write  

  
𝑎 = 𝑏 

 
If two numbers have the same remainder when divided by 𝑛 then we write  

  
𝑎 ≡ 𝑏 (mod 𝑛) 

 
and say “𝑎 is congruent to 𝑏 (when modding by 𝑛)” or we say:  “𝑎 and 𝑏 are the same 
(in mod 𝑛 arithmetic)”.  
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For example, 65 mod 7 = 2 
                      16 mod 7 = 2 

 
                                                              so 65 ≡ 16 (mod 7)  
And we say “65 is congruent to 16 (when modding by 7)”.  
In other words, “65 is congruent to 16 (in mod7 arithmetic)”. Another way of thinking 
of this is that even though 65 and 16 are not the same in regular arithmetic, they are 
the same in mod 7 arithmetic. 

 

Definition 2.3.1 If m is a positive integer and m divides b − a, we say that a and b are 
congruent modulo m (or equivalent modulo m), and write  “a ≡ b (modulo m)”.   

Although this definition looks somewhat technical, the idea is very simple. For some 
fixed integer m, two numbers are roughly the same if they differ by multiples of m.  

 

• Observe that if m | (b − a), then (−m) | (b − a) as well, so we do not lose anything 
by assuming that the modulus m is positive.   

• In general, the statement a ≡ b (mod m) can be thought of as saying “a and b are 
equal, up to a multiple of m”.   

• Notation: As shorthand we often also write “a ≡ b (mod m)”, or even just “a ≡ b” 
(when the modulus m is clear from the context).   

Example 2.3.2.    3 ≡ 9 (mod 6), since 6 divides 9−3=6.   

Example 2.3.3.   −2 ≡ 28 (mod 5), since 5 divides 28 − (−2) = 30.   

Example 2.3.4.    0 ≡ −666 (mod 3), since 3 divides −666 − 0 = −666.   

If m does not divide b−a, we say a and b are not congruent mod m, and write a ≢ b ( mod 
m).  For example: 2 ≢ 7(mod 3), because 3 does not divide 7−2=5.   

• Modular congruences behave quite similarly to equalities:   

1. For any a, a ≡ a (mod m).  

2. For any a and b, a  ≡ b (mod m) if and only if b ≡ a (mod m). 

3. For any a, b and c if , a  ≡ b (mod m) and b ≡ c (mod m)  then a  ≡ c (mod m). 

4. For any a, b, c and d if , a  ≡ b (mod m) and c ≡ d (mod m)  then a+c  ≡ b+d (mod 
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m). 

Example 2.3.5.  Find the possible values of m that satisfy each congruence: 
 

(a) )(mod313 m≡     (b) )(mod415 m≡  

 
Solution: (a) By definition of congruence, 13 – 3 = 10 must be divisible by m.  So the 
possible values of m are the positive divisors of }.10,5,2{:10 ∈m  
Remember by definition 1≠m  
 
(b) 15 - 4 = 11 must be divisible by m.  So m can only be 11.  

 
Example 2.3.6. If today is Wednesday, what day of the week will it be in 100 days’ 
time? 
Solution:  Sun  Mon  Tue  Wed Thurs  Frd  Sat 

      0     1  2      3       4      5 6 
 

Since we have numbers 0, 1, 2 , 3, 4, 5 and 6, we will do our arithmetic in modulo 7. 
Today is Wednesday (day 3) hence to find 100 days later, we can write 

3+100 =103≡ 5(mod 7) 
So the answer is the 5th day which is Friday.  
 
 

MOD TIPS  

1. When you calculate 𝑎  mod 𝑛, the only possibilities for a result (remainder) are 0 to 
𝑛 − 1.   

(a)  14 mod 3 would be either 0, 1 or 2.  
(b)  3 mod 9 would be 0, 1, 2 3, 4, 5, 6, 7 or 8.   
(c) 10523 mod115 would be only one number from 0, 1, 2, 3,..., 114.   

2. If 𝑎  is less than 𝑛, and 𝑎  is NOT negative, then 𝑎  mod  𝑛  =  𝑎 

• 2 mod18 = 2  
• 23 mod24 = 23   
• 114 mod1000 = 114   
• 0 mod15 = 0   

3. If 𝑎  is a multiple of 𝑛  the n 𝑎  mod𝑛=0.  

• 63 mod9 = 0  



	
   13	
  

• 48 mod12 = 0   
• 60000 mod6 = 0   
• 992 mod8 = 0   
• -77 mod7 = 0   

4. Since 0 mod𝑛 = 0 for any positive integer 𝑛, then 0 and any multiple of 𝑛 are 
congruent. In other words 0 ≡ 𝑎 (mod𝑛) where 𝑎 is any multiple of 𝑛. This means that 
0 is the same thing as any multiple of 𝑛 in mod𝑛 arithmetic. Therefore, 0 can be 
replaced by any multiple of 𝑛 in mod𝑛 arithmetic. We can use this fact to our 
advantage when dealing with negative numbers in modular arithmetic: just add on a 
positive multiple of 𝒏 that is “bigger” than your negative number.  

(a) -12 mod 5 
≡15-12 
≡3 (mod 5) 
 

(b) -7 mod13 
≡13-7 
≡6 (mod 13) 
 

(c) -8765 mod12 
≡12000-8765 
≡3235 
≡7 (mod 12) 

 

Chapter 3 
 

Operations on Modular Arithmetic 
After considering the basic definition of modular arithmetic, we next consider some 
of its basic properties. It turns out that modular arithmetic follows many of the same 
rules of classical arithmetic, thus making it very easy to work with. In order to 
highlight what is going on, we try to compare and contrast modular arithmetic to 
classical arithmetic.  

Intuition Behind Modular Addition: Observe the figure below. If we want to 
calculate 12+9 mod 7 we can easily go around the modular circle for a sequence 
of 12+9 steps clockwise (as shown in the bottom left circle). 
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We can take a shortcut by observing that every 7 steps we end up in the same position 
on the modular circle. These complete loops around the modular circle don’t 
contribute to our final position. We ignore these complete loops around the circle 
by calculating each number mod 7 (as shown in the two upper modular circles). This 
will give us the number of clockwise steps, relative to 0, that contributed to each of 
their final positions around the modular circle. 
Now, we only have to go around the circle clockwise the total of the number of steps 
that contributed to each of numbers final position (as shown in the bottom right 
modular circle). This method applies, in general, to any two integers and any modular 
circle. 
 

3.1. Addition, subtraction and multiplication 
Suppose we have the following two congruence relations:  

a ≡ b (mod m) 

c ≡ d (mod m). 

Are we able to combine these to obtain  
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a+c ≡ b+d  (mod m), 

a-c ≡ b-d   (mod m), 

a x c ≡ b x d  (mod m) 

Modular arithmetic obeys the same laws as convential  arithmetic, such as the 
commutative laws abba +≡+  and ,baab ≡  the associative laws 

)()( cbacba ++≡++  and )()( bcacab ≡  and the distributive laws (laws of brackets) 
acabcba +≡+ )(  and ,)( bcaccba +≡+  all of these modulo n. 

 
Example 3.1.1.  How can we simplify 20 x 21 in arithmetic modulo 19?  We first note 
that 20  ≡ 1 (mod 19) and also that 21 ≡ 2 (mod 19). We can combine these equations 
to obtain 20 x 21 ≡ 1 x 2 ≡ 2 (mod 19).  

Example 3.1.2. Can we simplify 17753 in arithmetic modulo 9? We first note that 17  
≡ -1 (mod 9), because 17 and -1 differ by a multiple of 9. Combine this congruence 
relation as many times as we would like. In particular, by combining 753 copies, we 

obtain 17753 ≡ (-1)753 (mod 9). Since (-1)n = -1 for any odd integer n, we have 

17753 ≡ -1 (mod 9). Finally, if we would like to have a simple, positive answer, then 
we can add 9 to obtain a final answer of 8.  

We have by now seen that in arithmetic modulo m, there is no difference between 
writing 1, 1 + m, 1 + 2m, and so forth, at least as far as addition, subtraction, and 
multiplication are concerned. For this reason, writing 4+11 ≡15 (mod 13) is “just as 
correct” as writing 4 + 11 ≡ 2 (mod 13), and “just as correct” as writing 4 + 11 ≡ 11 
(mod 13). As far as arithmetic modulo 13 is concerned, 2, 15, and -11 are exactly the 
same number. However, in some applications it is convenient to agree upon a 
standard way to represent numbers.  

Example 3.1.3. Suppose we want to know the remainder of 17 x 18 when it is divided 
by 19. We can do this in two different ways. First, we can multiply the two numbers 
directly and obtain 306; some calculation will show that 306 is congruent to 2 modulo 
19. Alternatively, we know that 17 ≡ 2 (mod 19) and 18 ≡ 1 (mod 19). Multiplying 
both sides we see that 17x18 ≡ (2)x(1) ≡ 2 (mod 19).  

 

3.2. Modular Exponentiation  
Most technological applications of modular arithmetic involve exponentials with very 
large numbers. For example, a typical problem related to encryption might involve 
solving one of the following two equations:  

6793032319 ≡ a (mod 103969)  
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 67930b ≡ 48560 (mod 103969).  

It turns out that a = 6582 and b = 32320 solve these equations, but those answers are 
not obvious at all from looking at the equations. More importantly, it is not even clear 
how we would go about determining a and b. In this section we will look at some 
problems involving modular exponentiation and some techniques we can use to solve 
such problems.  

Now let us consider the remainders of 10, 100, 1000, and so forth when we divide 
them by 3. The first thing we notice is that the remainder of 10 after dividing it by 3 is 
1. In the language of modular arithmetic we can write:  

101 ≡ 1 (mod 3) 

If a ≡ b (modm) and c ≡ d (mod m), then  

a x c ≡ b x d (mod m). In our particular case, we know that  

101 x 101 ≡ 1 x 1 (mod 3), 102 ≡ 1 (mod 3).  

We can then use the same technique, through induction, to show that all integer 
powers of 10 are congruent to 1 mod 3, since we can continue multiplying our 

resulting equation by the initial equation 101 ≡ 1 (mod 3). In other words, all positive 
integer powers of 10, when divided by 3, give us a remainder of 1!  

Example 3.2.1. Consider the very large number 71383921 and how we might de- 
termine its remainder after dividing it by 4. Of course we know that the only possible 
remainder are 0, 1, 2, and 3, but it is not clear how to determine which of those it is. 
Simple calculations show the following pattern:  

71 ≡ 3 (mod4),  

72 ≡ 1 (mod4),  

73 ≡ 3 (mod4),  

74 ≡ 1 (mod4),...  

It seems that if n is odd, then 7n ≡ 3 (mod4), and if n is even,t hen 7n ≡1 (mod 4). We 

can prove that this pattern will repeat as n increases by noticing that 72 ≡ 1 (mod 4). 

Thus 7n ≡ 3 (mod4) then7n+2 ≡  3 (mod4), and likewise if 7n ≡1 (mod4) then 

7n+2 ≡1 (mod 4). Therefore, the pattern repeats with a period of 2. Determining the 
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remainder of 71383921 when dividing by 4 is then straightforward, since the 
exponent n = 1383921 is odd, the remainder must be 3.  

Example 3.2.2. Suppose we want to determine the standard form of 172 in mod 19 
arithmetic. One way in which we can do this is by considering the square of 17, which 
is 289, divide that by 19 and then take the remainder. However, since we know that 

17 ≡ 2 (mod 19), we can multiply this congruence equation by itself to obtain 172 ≡ 

22 ≡ 4 (mod 19). We can easily verify that the remainder of 289, when divided by 17, 
is indeed 4.  

Example 3.2.3.  Suppose we want to determine the standard form of 18489391312 in 
mod 19 arithmetic. We should first notice that in mod 19 arithmetic, 18 is congruent 

to -1, and so 18489391312 ≡ (-1)489391312 (mod 19). It is relatively easy to see that 

if n is odd then (-1)n =1,and if n is even then (1)n =1. Since 489391312 is even, 

18489391312 ≡ 1 (mod 19).  

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 



	
   18	
  

Chapter 4 
 

Applications of modular arithmetic: 
Cryptography 

 
4.1 General principles of Cryptography 
 

• Cryptography is the name given to encoding and transmitting information in a 
way that makes it difficult for someone else to intercept and use.  
 

o Many of the earliest uses of cryptography were to send secure military 
information and orders that could not be decoded by enemy forces.   
 

o In the modern setting, secure cryptography is at the heart of internet 
commerce: for example, it allows merchants and credit card companies 
to exchange purchasing information without anyone else being able to 
eavesdrop.   

 

• In analysis of cryptography, it is useful to have a standard list of placeholder 
names:   
 

o Alice and Bob refer to two parties attempting to exchange information. 
(Generally, Alice wants to send  a message to Bob, though the 
communication can be two-directional.)   

o Eve refers to a non-malicious eavesdropper, who can listen in to the 
communications between Alice and Bob, but will not alter them.   

o Mallory refers to a malicious eavesdropper, who can listen to Alice and 
Bob's communications and may also attempt to impersonate them or 
alter their messages.   

• In general, a cryptographic system works as follows:   
o Alice wishes to send a secure message to Bob.  
o Alice takes her unencrypted message, her plaintext, and encrypts it 
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somehow to obtain a ciphertext.  
o Alice then sends the ciphertext to Bob, who then decodes it to recover 

Alice's original message.   
• We will generally write plaintexts in bold lowercase and ciphertexts in 

BOLD UPPERCASE.  
o Note: For the ease of readability, when it is reasonable we will include 

spaces (because it is hard to read a lengthy text with no spaces) when 
rendering plaintexts and ciphertexts, but when we encode messages we 
will not use the spaces.   

• Historically, most cryptography relied on making the message appear 
nonsensical and unreadable, or by hiding it in some other more innocuous 
location (e.g., by encoding the message in the first letter of each word in a 
document.  

o This latter procedure is sometimes called steganography, the hiding of 
secret information in plain sight. It is also interesting, but is not really 
the purpose of cryptography.   

 
o One of the most classical cryptosystems is the Caesar shift algorithm 

(so named because it was used by Julius Caesar): simply shift each 
letter of the plaintext forward a fixed number of letters in the alphabet 
(wrapping around from Z to A, as needed).  

• We will also mention a few different types of attacks on cryptosystems: 

o Ciphertext-only attack: Eve only has a copy of the ciphertext and 
wants to decode it.   

o Known-plaintext attack: Eve has a copy of the ciphertext and the 
associated plaintext. In this case Eve's goal is to break the encryption 
system so she can read future ciphertexts that are encoded using the 
same system.   

o Chosen-plaintext attack: Eve is able to choose a plaintext and see how 
it encodes to a ciphertext. (For example, if the encryption algorithm is 
implemented as software on a computer, Eve would have access to the 
part of the program that encodes messages.) Again, Eve's goal is to try 
to break the encryption algorithm so she can read future ciphertexts.   

o Chosen-ciphertext attack: Eve is able to choose a ciphertext and see 
how it decodes to a plaintext. (For example, if the encryption algorithm 
is implemented as software on a computer, Eve would have access to 
the part of the program that decodes messages.)   

 
 
In the following   (see https://www.khanacademy.org/computing/computer-
science/cryptography/crypt/v/caesar-cipher) there is an excellent video on ciphers.  
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What are the eras of cryptography? Crytography has been through numerous 
phases of evolution. Early ciphers in cryptography were designed to allow encryption 
and decryption to take place by hand, while those which are developed and used today 
are only possible due to the high computational performance of modern machines (i.e 
the computer you are using right now). The major eras which have shaped 
cryptography are listed below. 

 Classical 
The classical algorithms are those invented pre-computer up until around the 1950's. 
The list below is roughly ordered by complexity, least complex at the top. 
	
  

• Atbash Cipher 
• ROT13 Cipher 
• Caesar Cipher  
• Affine Cipher  
• Rail-fence Cipher  
• Baconian Cipher  
• Polybius Square Cipher 
• Simple Substitution Cipher  
• Codes and Nomenclators Cipher  
• Autokey Cipher  
• Beaufort Cipher  
• Porta Cipher  
• Vigenere Cipher  
• Playfair Cipher  
• ADFGVX Cipher  

Mechanical  
Mechanical Ciphers are those that were developed around the second World War, 
which rely on sophisticated gearing mechanisms to encipher text. 

§ Enigma Cipher 
§ Lorenz Cipher 
§ Jefferson disk 

 
Cryptographic machines: Before the advent of the modern computer, machines 
existed that simplified the use of encryption and made more complex encryption 
schemes feasible. Initially,such devices were simple mechanical machines, but as 
technology progressed, we began to see the inclusion of electronics and considerably 
more complex systems.The Jefferson Disk, invented by Thomas Jefferson in 1795, is 
a purely mechanical cryptographic machine. It is composed of a series of disks, each 
marked with the letters a to z around its edge, as shown in the following Figure. On 
each disk, the letters are arranged in a different order; each disk is also marked with a 
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unique designator to facilitate arranging them in a particular order. The device built 
by Jefferson contained 36 disks, with each disk representing one character in the 
message. 
 

 

Enigma Cipher  
The Enigma cipher was a field cipher used by the Germans during World War II. The 
Enigma is one of the better known historical encryption machines, and it actually 
refers to a range of similar cipher machines. The first Enigma machine was invented 
by a German engineer named Arthur Scherbius at the end of the first world war. It 
was used commercially from the early 1920s on, and was also adopted by the military 
and governmental services of a number of nations — most famously by Nazi 
Germany before and during World War II. A variety of different models of Enigma 
were produced, but the German military model, the Wehrmacht Enigma, is the 
version most commonly discussed. 

 

 

 

 



	
   22	
  

Modern 

Modern algorithms are those that are used in current technology e.g. block ciphers, 

public key cryptosystems etc. These alogrithms are very secure (otherwise they would 

not be used), but in many cases we can practice on weakened versions of the 

algorithms. 

 
4.2 Caesar Cipher  
 
The Caesar cipher is a classic example of ancient cryptography and is said to have 
been used by Julius Caesar. The Caesar cipher is based on transposition and involves 
shifting each letter of the plaintext message by a certain number of letters, historically 
three, as shown in the following figure. The ciphertext can be decrypted by applying 
the same number of shifts in the opposite direction. This type of encryption is known 
as a substitution cipher, due to the substitution of one letter for another in a consistent 
fashion.  

 
A more recent variation of the Caesar cipher can be found in the 

ROT13cipher. ROT13 uses the same mechanism as the Caesar cipher but moves each 
letter 13 places forward. The convenience of moving 13 places lies in the fact that 
applying another round of encryption with ROT13 also functions as decryption,as two 
rotations will return us to the original starting place in the alphabet. Utilities for 
performing ROT13 can be found in the basic set of tools that ship with many Linux 
and UNIX operating systems. There are a number of simple systems that are built 
around simple transposition.  
 

Example 4.2.1.  To pass an encrypted message from one person to another, it is first 
necessary that both parties have the 'key' for the cipher, so that the sender may encrypt 
it and the receiver may decrypt it. For the caesar cipher, the key is the number of 
characters to shift the cipher alphabet. 

Here is a quick example of the encryption and decryption steps involved with the 
Caesar cipher. The text we will encrypt is 'defend the east wall of the castle', with a 
shift (key) of 1. 
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It is easy to see how each character in the plaintext is shifted up the alphabet. 
Decryption is just as easy, by using an offset of -1. 
 

 

How do Modular Arithmetic and Caesar Ciphers relate? Since there are 26 letters 
in the English alphabet, let’s relate the letters a-z by numbers 0-25 as shown by the 
following figure . 

 

 

Using the Caesar Cipher: Line up the wheels so that the “a” lines up with “D”.  
Notice going from “a” to “D” was a shift of 3 letters over. Thus we can encrypt the 
word “TOP SECRET ” by relating “t” with 19 on the wheel, adding 3 to get 22, and 
then we turn this back into a letter, which gives us “w”. Similarly  

“o” → 14 → 17 → r.   Plaintext:  top secret 

“p” → 15→ 178→ s                    Ciphertext: wrsvhfuhw 

“s” → 18 → 21 → v.  

“e” → 4 → 7 → h.  

“c” → 2 → 5 → f.  

“r” → 17 → 20 → u.  

“e” → 4 → 7 → h  

“t” → 19 → 22 → w.  

• Mathematically we can describe the Caesar shift as follows: 
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Ø First, we choose a key k.   
Ø We encrypt the message by applying the function f (x) = x + k (mod 26) to the 

numbers making up the  message.   

Ø To decrypt, we apply the inverse function f−1(x) = x − k (mod 26) to the 
encrypted message.   

• We can generalize the shift cipher by using a more complicated encoding function. 
Let us instead consider the class of linear encoding functions of the form f(x) 
= ax + b (mod 26) for some choices of a and b. These functions are affine 
functions, so the associated cipher is called an affine cipher.  

• We can make a table for the encryption of each letter under the affine cipher 
to save time when encoding long ���messages.  

For example, here is the encoding table for the affine cipher f(x) 
= 7x + 3 (mod 26): ��� 

 

The encoding of the plaintext secret message  is ZFRSFGJFZZDT 

 

Example 4.2.1  We agree with our friend to use the Shift Cipher with key k=19 for 
our message.  
We encrypt the message "KHAN", as follows: 

 

 
 

So, after applyink the Shift Cipher with key K=19 our message text "KHAN" gave 
us cipher text "DATG". 
We give the message "DATG" to our friend. 
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How to decrypt: For every letter in the cipher text C : 

1. Convert the letter into the number that matches its order in the alphabet starting 
from 0, and call this number Y. 
(A=0, B=1, C=2, ..., Y=24, Z=25) 
2. Calculate: X= (Y - K) mod 26 
3. Convert the number X into a letter that matches its order in the alphabet starting 
from 0. 
(A=0, B=1, C=2, ..., Y=24, Z=25) 
Our friend now decodes the message using our agreed upon key K=19. As follows: 
 
 

 

 

So, after decrypting the Shift Cipher with key K=19 our friend deciphers the cipher 
text "DATG" into the message text "KHAN". 

Why is the Shift Cipher insecure? A cipher should prevent an attacker, who has a 
copy of the cipher text but does not know the key, from discovering the contents of 
the message. Since we only have 26 choices for the key, someone can easily try all 
of the 26 keys, one by one, until they recover the message.  

How to Crack the Caesar Cipher:  

As we’ve discovered, there are only 25 different shifts we can use to encrypt a 
message with a Caesar cipher. Because of this, the Caesar cipher is considered to be a 
very weak type of cryptography. We call the act of testing all 25 options until finding 
the key, the method of brute force.  

Our ciphertext is the following: 

YMJHFJXFWHNUMJWNXTSJTKYMJJFWQNJXYPSTBSFSIXNRUQJXYHNUMJWX 

To find out what the original was, we try decrypting it with each of the 25 possible 
keys, calculating the fitness for each trial decryption: 
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Cryptanalysis 
Cryptanalysis is the art of breaking codes and ciphers. The Caesar cipher is probably 
the easiest of all ciphers to break. Since the shift has to be a number between 1 and 
25, (0 or 26 would result in an unchanged plaintext) we can simply try each 
possibility and see which one results in a piece of readable text. If you happen to 
know what a piece of the ciphertext is, or you can guess a piece, then this will allow 
you to immediately find the key. 

If this is not possible, a more systematic approach is to calculate the frequency 
distribution of the letters in the cipher text. This consists of counting how many times 
each letter appears. Natural English text has a very distinct distribution that can be 
used help crack codes. This distribution is as follows: 
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This means that the letter e is the most common, and appears almost 13% of the time, 
whereas z appears far less than 1 percent of time. Application of the Caesar cipher 
does not change these letter frequencies, it merely shifts them along a bit (for a shift 
of 1, the most frequent ciphertext letter becomes f). A cryptanalyst just has to find the 
shift that causes the ciphertext frequencies to match up closely with the natural 
English frequencies, then decrypt the text using that shift. This method can be used to 
easily break Caesar ciphers by hand. 
 

 

4.3.  Vigenere Cipher  
A major weakness of the Caesar cipher is that there are not many ways to encrypt a 
message. Also long messages encrypted with the Caesar cipher are easily cracked 
using “frequency analysis”. A stronger cipher is the Vigenere cipher. Here’s how it 
works!  

• Here is the procedure for the Vigenère cipher: 

• First, we choose a keyword, which (numerically) is a vector of some length n. 

• We then break the message into letter blocks of length n, and then encrypt each 
block of letters by adding the keyword vector to it. We then put all of the 
blocks together in the appropriate order.   

• To decrypt, we simply do the inverse: break the ciphertext into blocks of length n 
and subtract the keyword vector.   

Example 4.3.1: Encode the message twentysix using the Vigenère cipher with 

keyword one.  
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Here is a table of the encryption procedure:   

 
Thus we obtain the ciphertext .    HJIBGCGVB 

Note that the letter t appears twice in the plaintext, but is represented in the ciphertext 
by two different  characters: the first time by H and the second by G.  Inversely, the 
letter G appears twice in the ciphertext, but represents different letters from the 
plaintext.   

Example 4.3.2: Encode the message I love math using the Vigenère cipher with 

keyword  “car”.  

c 

+2 

a 

0 

r 

+17 

c 

+2 

a 

0 

r 

+17 

c 

+2 

a 

0 

r 

+17 

 

I 

8 

l 

11 

o 

14 

v 

21 

e 

4 

m 

12 

a 

0 

t 

19 

h 

7 

 

10 

K 

11 

L 

31=5 

F 

23 

X 

4 

E 

29=3 

D 

2 

C 

19 

T 

24 

Y 

 

 

Thus we obtain the ciphertext : KLFXEDCTY  

Now by using the similar system we can decode Vigenere ciphers 

Example 4.3.3 : Suppose we arranged our secret codeword to be “dog” and I sent you 
the secret message below. Try to decode it.  

Secret Message: ZVE GCKV BUECJB HGOY ZR AK?  

D 

-3 

o       

-14 

g 

-6 

d 

-3 

o 

-14 

g 

-6 

d 

-3 

o 

-14 

g 

-6 

d 

-3 

o 

-14 

g 

-6 

d 

-3 

o 

-14 

g 

-6 

d 

-3 

o 

-14 

g 

-6 

d 

-3 

o 

-14 

g 

-6 

Z 

25 

V 

21 

E 

4 

G 

6 

C 

2 

K 
10 

V 
21 

B 

1 

U 
20 

E

4 

C 

2 

J

9 

B 

1 

H 

7 

G 

6 

O 

14 

Y 

24 

Z 

25 

R 

17 

A 

0 

K 

10 

22 

W 

7 

H 

24 

Y 
3 

D 

14 

O 

4 

E 

18 

S 
13 

N 

14 

O 
1 

B 

14 

O 

3 

D 

24 

Y 

19 

T 

0 

A 

11 

L 

10 

K 

19 

T 

14 

O 

12 

M 

4 

E 
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MORE QUESTIONES 

1…Suppose that Alice and Bob are trying to send secret letters to each other in the 
mail. In order for the letters to stay a secret, they want to think of a way to send the 
messages in a “secret code” so that anybody who tries to intercept the message 
wouldn’t be able to read it even if they managed to intercept it. One way they can do 
this is using a Caesar Cipher. In a Caesar cipher, the alphabet is shifted a certain 
number of places and each letter is replaced by the corresponding letter.  

For example, say Alice and Bob agree that they want to shift the letters by three: TO 
ENCRYPT  

 

(1) Using the cipher key, they would first convert the letters in their message to their 
corresponding numbers to get a numerical message:  

 

  
 

(2) Then they would then shift all the numbers in their message up by three:  

  
(a) Can we have numbers greater than 25 in our shifted numerical message? Why or 
why not?  

(b) What do we do if a numbers in the numerical message is greater than 25?  

 

(3). Then, using the cipher key, they would convert the resulting numerical message 
into a letter message.  
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TO DECRYPT  

(1) Using the cipher key, they would first convert the letters in their message to their 
corresponding numbers to get a numerical message:  

  
(2) Then they would then shift all the numbers in their message down by three:  

  
(3) Then, using the cipher key, they would convert the resulting numerical message 
into a letter message.  

  
2…. You win the lottery and decide to take a 1000-day trip. You leave on a Monday. 
On what day of the week do you return?  
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3…. The Hidden Magic of Walt Disney World (2nd edition) has over 600 secrets of 
the Magic Kingdom, Epcot, Disney’s Hollywood Studios, and Disney’s Animal 
Kingdom. Can you find the secret digit # that is missing from its ISBN14#0587809  

 

 
  

 

4.....

 

 

5...... Find the remainder when 5319  is divided by 8. 
 

6......Which day of the week will it be 
(a) 56 days after a Saturday? 
(b) 264 days after a Friday? 
(c) 312 days after a Wednesday? 

 
7....... A man left ANKARA for IZMİR at 6.00 am and had a flat tire on the way.  
The journey took 16 hours.  When did he arrive in Ibadan? 
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8....... Find all possible values of m if  
 

(a) )(mod820 m≡   (b) )(mod27 m−≡−  
 

9....... Find the remainder when each expression is divided by 3. 
 

(a) 928   (b) 1225 27414 +  

 
10....... Solve the following equations 

 
(a) )8(mod43 ≡+x  
(b) )7(mod12 ≡x  
(c) )8(mod423 ≡+x  
(d) )4(mod352 ≡+x  

(e) )5(mod1432 2 ≡+ xx  
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1. Lesson plan: DESCRIPTION OF THE LESSON  

 

Study program: Undergraduate studies in Computer Sciences 

Subject:  Calculus / Business Mathematics  

Topic:   Definite Integration: Applications to Business and Economics 

Duration:  2h + 1h (Lecture and practical auditorial + Practical Wolfram Mathematics Examples)  

Description:  Introduction to Definite Integration – Area as the Limit of a Sum  
  The Definite Integral – Area Under a Curve – The Fundamental Theorem of Calculus 
  Examples paper and pencil  
  Wolfram Mathematics for Definite Integration – Interactive experimentation 

Example 1: Increasing of the total manufacturing cost by change of the level 
of production based on marginal cost function. 
Example 2: Rate of profitability comparison for two input investments. 

 

Goals:  1. To introduce the students to the concept of Definite Integration and the 
calculation of the area under a curve of a function.  

 2. To show and examine application of the Definite Integration to Business and 
Economics.  

 3. To demonstrate the usage of Wolfram Mathematics in examination of a real-
world problem solving by organized interactive activity with its graphical 
presentation potential. To introduce the concept of mathSTEM methodology in 
teaching mathematics for STEM students.  

Objectives: 1. Students will understand the concept of Definite Integration and its application 
for calculating the Area under a Curve.  

 2. Students will be introduced the Fundamental Theorem of Calculus supported by 
examples of application.  

 3. Students will be introduced to the mathSTEM methodology developed for this 
topic by introducing the experimentation environment in Wolfram Mathematics.  

 4. Students will experiment interactively with the mathSTEM application for Definite 
Integration on the Wolfram Mathematics platform.  



Materials:  A detailed lesson plan for the lecture 

 A power point presentation supporting the formal definitions, theorem statements 
and exercises to be solved during the lecture.  

 Wolfram mathematics application running on presenter’s computer and allowing 
interactions visible to the class.  

 Summary worksheet with exercises for further practice.  

 Moodle entry in the mathSTEM platform for further reference.  

Assessment:  The students’ will be assessed at the end of the class. A feedback form will be 
offered to the students at the end of the class on mathSTEM methodology.  

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Lesson plan: LESSON CONTENT 
 
Definite Integration – Applications to Business and Economy  
 
 
PART ONE: AREA AS THE LIMIT OF A SUM, AREA UNDER A CURVE 
 
1. Review of Indefinite integral: 
 

  ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶  F’(x) = f(x)  

 

 

2. Antiderivatives and Area under a curve: 

A surprising connection between antiderivatives and sums of areas under a given curve: 

 

Determining a land value by finding the area under the curve.  

 

An approximation of area under a curve by rectangles. 



 

The approximation improves as number of rectangles increase.  

 

 

 

3. The Definite integral: 

 

 

 

 



4. The Fundamental Theorem of Calculus: 

 

 

  



Example:  

 

 

5. Integration rules:  

 



 

The subdivision rule for definite integrals.  

 

6. Interactive Exercises (Net Change):  

 

Example:  

 

  



PART TWO: EXAMPLES IN BUSINESS AND ECONOMY USING WOLFRAM MATHEMATICS 

 

EXAMPLE 1: Manufacturing cost increase.    

Total manufacturing cost increase: Given Marginal cost find by how much will the total 
manufacturing cost increase for a certain raise of level of production.  

At a certain factory, the marginal cost is 3(𝑞 − 4)ଶ dollars per unit when the level of production is q 
units.  

By how much will the total manufacturing cost increase if the level of production is raised from 6 
units to 10 units?  

SOLUTION:  

(1)      C(q)   total cost of producing q units.  

 

(2)      
ௗ஼

ௗ௤
= 3(𝑞 − 4)ଶ  the derivative specifying the marginal cost 

The increase in cost if production is raised from 6 units to 10 units is given by the definite 

integral:  

(3)      C(10) – C(6) = ∫ 3(𝑞 − 4)ଶ𝑑𝑞 = 
ଵ଴

଺
(𝑞 − 4)ଷ 

10
6

 = $208. 

End of solution.  

 

  



EXAMPLE 1: Net excess profit.  

 

Net excess profit as the area between rate of profitability curves. 

 

 



 



 

Net excess profit for one investment plan over another.  

 

Interactive activity with Wolfram Mathematics - Example 1  

 

 

Activity 1: Use the provided Wolfram Mathematics application. Plot the profit generator functions 
P1’ (t) = 50 + t2 and P2’(t) = 200 + 5t 

1. Note the one function is linear and another a parabola.  
2. Consider the domain x >= 0. Discuss the ranges of the functions.  
3. Discuss the expectations for intersections.  



4. Discuss the area between the curves, the y-axe and the line x = x0, where x0 is the 
intersection.  

5. Conclude on resulting area being the subtraction of two areas.  
6. Involve definite integral in calculations.  

 

Activity 2: Use the provided application in Wolfram Mathematics. Examine the change of the area 
between the curves according to the respective changes in the functions.  

1. Try several linear functions with the same slope.  
2. Try several parabolas with different y-axe intercepts.  
3. Conclude of the resulting areas between the two curves.  
4. Examine few more features of the powerful WM package.  

 

 

 



EXAMPLE 2: Net earnings from an industrial machine. 
Suppose that when it is t years old, a particular industrial machine generates revenue at the rate 
R’(t) = 5000 – 20t2 dollars per year and that the operating and servicing costs related to the 
machine accumulate at rate C’(t) = 2000 + 10t2 dollars per year.  

(A) How may years pass before the profitability of the machine begins to decline?  
(B) Compute the net earnings generated by the machine over the time period determined by (A).  

 
Solution:  
(A) P(t) = R’(t) – C’(t) = 3000 – 30t2 the profit associated with the machine after t-years 

P’(t) = 0     profitability begins to decline  
t = 10 years 

 

(B) The net earnings NE over the time period 0 t 10 are given by the difference  

NE = P(10) – P(0) = ∫ 𝑃′(𝑡)𝑑𝑡
ଵ଴

଴
 = ∫ (3000 − 30𝑡ଶ)𝑑𝑡

ଵ଴

଴
 = (3000t - 10𝑡ଷ) 

10
0

 = $20.000 

End of solution  

 

Interactive activity with Wolfram Mathematics Example 2 

 

 

 

Activity 1: Use the provided Wolfram Mathematics application. Plot the Net Earnings R’(t) = 5000 – 

20t2 and Maintenance and Servicing C’(t) = 2000 + 10t2 functions for t-years.  

1. Consider the domain x >= 0. Discuss the ranges of the functions.  
2. Discuss the expectations for intersections.  



3. Discuss the area between the curves, the y-axe and the line x = x0, where x0 is the 
intersection.  

4. Conclude on resulting area being the subtraction of two areas.  
5. Involve definite integral in calculations.  
6. Compare the result with definite integral of the Profit function.  

 

Activity 2: Use the provided Wolfram Mathematics application. Examine the change of the area 
between the curves according to the respective changes in the functions.  

1. Try several parabolas with different y-axe intercepts.  
2. Conclude of the resulting areas between the two curves.  
3. Examine few more features of the powerful WM package.  

 

 

 

Reference:  
Calculus for Business Economics, and the Social and Life Sciences, Laurence Hoffmann, 
Gerald Bradley, McGraw-Hill Higher Education, Seventh edition 2000 and Tenth edition 
2010.  
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1. Introduction

The main goal of statistical reasoning is to draw conclusions from available data
and in this document we will describe ideas and methods behind this reasoning.
The aim is not to explain concepts in depth, but to go rather quickly through the
material and illustrate statistical reasoning using concrete and informative exam-
ples.

Important ingredient of this document is the use of a statistical software package.
We will use R, an open source free software which is widely popular with extensive
resources and manuals available online. Examples and text will be accompanied
with key parts of the R code, while additional, more technical parts of the R code
will be given in the Appendix. We will avoid describing unnecessary details of the
code syntax, since we believe it is quite intuitive and easy to follow.

In the first part of this document we will deal with descriptive statistics whose
goal is to give an initial sense of the information contained in the data. We will
describe several graphical representations of the data which give us a first, visual
impression of its distribution. We will also describe some important numerical me-
asurements of data, like mean and standard deviation, which summarize important
characteristics of the data like its expected values and variability.

Next we will proceed to build theoretical models for the data. In theoretical
models the relative frequencies of outcomes observed in the data correspond to
numbers called probabilities. While we can expect some discrepancies between
observed frequencies and probabilities, for large samples, if the theoretical model
is appropriate, these discrepancies should be small and tend to zero as the sample
increases.

The last part of the document is devoted to statistical hypotheses testing. In
essence, statistical hypothesis testing consists in checking whether the actual, ob-
served data are in accordance with a theoretical model. Initial hypothesis that we
want to test is restated in the form of a theoretical probability model. This theore-
tical model influences what kind of outcomes of measurements we would expect. If
the observed data are unlikely to occur given this theoretical model, i. e. the more
it diverges from the expected outcomes, we have more reasons to doubt the initial
hypothesis and reject it as wrong.
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2. Descriptive statistics

2.1. Charts.

Example 2.1. In the table below one can find the areas of the national parks in
Croatia.

National park Area (ha)

Plitvička jezera 19479
Paklenica 3617
Risnjak 3198
Mljet 3100

Kornati 6900
Brijuni 3635
Krka 14200

> library(plotrix)

> povrsine = c(19479,3617,3198,3100,6900,3635,14200)

> parkovi = c("Plitvice", "Paklenica", "Risnjak", "Mljet", "Kornati",

+ "Brijuni", "Krka")

> pie3D(povrsine,labels=parkovi,explode=0.1,

+ main="Pie chart: Area of national parks in Croatia ")

Pie chart: Area of national parks in Croatia 

Plitvice
Paklenica

Risnjak

Mljet

Kornati

Brijuni
Krka

> parkovi = c("Plitvice", "Pakl.", "Risnjak", "Mljet", "Kornati",

+ "Brijuni", "Krka")

> barplot(povrsine, main = "Bar chart: Area of national parks in Croatia",

+ xlab = "National parks", names.arg = parkovi,col = rainbow(20))
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Bar chart: Area of national parks in Croatia
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2.2. Bar chart. Example 2. Let us use file ”person2020.csv”. It contains list
of 88937 famous people( for example: Julius Caesar, Muhammad, Marlon Brando,
Donald Trump, Luka Modrić, Kiro Lazarov, James Dean) and for each of them
there is 34 same facts such as birthrate, birthplace, etc.
Let us now extract just soccer players and associate them with their zodiac sign.

Air Earth Fire Water
4225 4252 4269 4122

> library(xtable)

> library(anytime)

> library(DescTools)

> library(stringi)

> library(stringr)

> pantheon = read.csv("person2020.csv")

> nogometasi=subset( pantheon, pantheon$occupation =="SOCCER PLAYER")

> nogometasiA=nogometasi$birthdate

> nogometasiAB=anydate(nogometasiA)

> nogometasiAH=Zodiac(nogometasiAB)

> nogometasizod=stri_remove_empty(nogometasiAH, na_empty = TRUE)

> table1 = table(nogometasizod)

> mat = xtable(table1)

> colnames(mat) = c( "frequency")

> print(mat, sanitize.text.function = function(x){x})

> barplot(table1,

+ main="Soccer players by zodiac signs",

+ ylab="Count",

+ border="red", col="blue",las=2)
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frequency
Aquarius 1438

Aries 1635
Cancer 1434

Capricorn 1316
Gemini 1451

Leo 1462
Libra 1336

Pisces 1455
Sagittarius 1172

Scorpio 1233
Taurus 1540

Virgo 1396
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We can convert each zodiac sign to four elements( Fire, Water, Earth, Air) signs
using conversion table:
Fire (Aries, Leo, Sagittarius) Earth (Taurus, Virgo, Capricorn) Air (Gemini, Libra,
Aquarius) Water (Cancer, Scorpio, Pisces).

> nogometasiAHA=str_replace_all(nogometasiAH, c("Leo" = "Fire", "Aries" = "Fire",

+ "Sagittarius" = "Fire", "Taurus" = "Earth", "Virgo" = "Earth",

+ "Capricorn" = "Earth", "Gemini" = "Air","Libra" = "Air",

+ "Aquarius" = "Air", "Cancer" = "Water", "Scorpio" = "Water",

+ "Pisces" = "Water"))

> fourfreq = table(nogometasiAHA)

> signs = c("Air", "Earth", "Fire", "Water")
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> barplot(fourfreq, main = "Soccer players by four elements",

+ xlab = "Elements", names.arg = signs,col = rainbow(20))

Air Earth Fire Water

Soccer players by four elements

Elements
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> frekr =fourfreq/sum(fourfreq)

> parkovi = c("Air", "Earth", "Fire", "Water")

> barplot(frekr, main =

+ "Soccer players by four elements-relative frequency", xlab = "Elements",

+ names.arg = parkovi,col = rainbow(20))
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Soccer players by four elements−relative frequency
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2.3. Relative frequencies-numerical valued data.

Example 2.2. In the next table we have grades at an exam

(1)
grade 1 2 3 4 5

frequency 5 9 72 16 8

> df= as.data.frame(cbind(grade= 1:5, frequency= c(5,9,72,16,8)))

> df.freq= as.vector(rep(df$grade, df$frequency))

> boje = c("red", "yellow", "green", "orange", "blue")

> hist(df.freq,breaks=c(0.5,1.5,2.5,3.5,4.5,5.5), main="student grades",

+ xlab="grades",freq=T)
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Observe, we have n = 110, grades (students). This information and the next
table with relative frequencies

(2)
grade 1 2 3 4 5

frequency 5
110

9
110

72
110

16
110

8
110

is equivalent to the table (1),
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> df= as.data.frame(cbind(grade= 1:5, frequency= c(5,9,72,16,8)))

> df.freq= as.vector(rep(df$grade, df$frequency))

> boje = c("red", "yellow", "green", "orange", "blue")

> hist(df.freq,breaks=c(0.5,1.5,2.5,3.5,4.5,5.5), main="student grades",

+ xlab="grades",freq=FALSE, col =boje)
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2.4. Mean and variance. As we know

(3) x̄ :=
1

n
(x1 + x2 + . . .+ xn)

is the arithmetic mean of the numbers {x1, x2, . . . , xn} .

If there is only {x1, x2, . . . , xk} different values with frequencies, respectively,

{f1, f2, . . . , fk} ,
∑k

i=1 fi = n, then (3) becomes

(4) x̄ =
f1
n
x1 +

f2
n
x2 + . . .+

fk
n
xk

and now
∑k

i=1
fi
n = 1.

Therefore, we can say, expected value

(5) µ = E[X] =

k∑
i=1

pixi

of the random variable

X ∼
(
x1 x2 · · · xn
p1 p2 · · · pn

)
is the ”mean” value of the random variable X.
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2.5. Variance. We can differ between random variables using the notion of vari-
ance

(6) V ar(X) = E[(X − E[X])2] =

k∑
i=1

pi(xi − µ)2,

and as the next animation illustrates.

3. Probability and Simulations

3.1. Frequencies and probabilities.

Example 3.1. Simulate 100 die throws of and calculate the relative frequency of
the outcomes that were greater than or equal to 5.

Let us first simulate, for example, 15 throws:

> Omega=1:6

> dice=sample(Omega, replace=TRUE, size=15)

The logical input replace tells whether the already sampled values can appear
in the sample again. The sampled values were stored in the array dice, so the
simulated die throws are

> dice

[1] 5 6 6 2 6 1 5 2 5 3 5 2 1 4 4

The following command checks which elements of dice are greater than or equal
to 5.

> dice>=5

[1] TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

[13] FALSE FALSE FALSE

The answer to the posted question is obtained by the following commands

> Omega=1:6

> dice=sample(Omega, replace=TRUE, size=100)

> length(dice[dice %in% c(5,6)])/100

10



[1] 0.25

>

Example 3.2. Two dice, one blue colored and the other red, are thrown simulta-
neously.

• Let A be the event that the number 4 was rolled on the blue die and the
number 5 was rolled on the red die.

• Let B be the event that the sum of the two rolled numbers is equal to 9.

Estimate the probabilities of A and B by using simulations with n = 1000 iterations.

> N=1000

> Omega=1:6

> diceRolls = replicate(2, sample(Omega, size=N, replace = TRUE))

The command replicate, as the name suggests, invokes twice the command
sample. The results are stored in the two dimensional array diceRolls.
For example

> diceRolls[9,]

[1] 4 1

are the numbers rolled in the ninth throw. The first ten rolls of the blue die are

> diceRolls[1:10,1]

[1] 5 1 2 1 4 5 3 3 4 4

and the first ten rolls of the red die are

> diceRolls[1:10,2]

[1] 5 5 3 1 4 1 4 1 1 4

The estimated probability of A is

> sum(diceRolls[,1] == 4 & diceRolls[,2] == 5) / N

[1] 0.03

and the estimated probability of B is

> sum(diceRolls[,1]+ diceRolls[,2] == 9) / N

[1] 0.115
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The table (2) can be put, in more probabilistic view, in terms of random variables

X ∼
(

1 2 3 4 5
5

110
9

110
72
110

16
110

8
110

)

where

X = ”M2 student grades in 2021”

Example 3.3. Give a simulation of, future, grades for the next generation of 100
students on the Mathematics 2. Represent simulated data in table and with histo-
gram.

We first simulate 100 grades, according to distribution given by the random
variable X

> M2grades2022=sample(x = c(1: 5),

+ prob = c(5/110, 9/110,72/110 ,16/110, 8/110),

+ size = 100,

+ replace = TRUE)

Now we can list simulated grades

> M2grades2022

[1] 3 3 3 3 1 3 3 4 3 3 1 3 3 4 5 3 1 3 3 4 3 3 3 3 3 1 3 3 3 4 3 3 3 1 3 3 4

[38] 3 3 2 3 2 3 3 2 3 3 5 4 3 3 3 3 3 3 1 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

[75] 3 3 3 2 3 3 3 4 2 3 3 2 3 2 3 2 3 3 4 2 2 3 4 2 3 3

and put them into the frequency table

> table(M2grades2022)

M2grades2022

1 2 3 4 5

6 11 71 10 2

and then represent them visually

> plot(table(M2grades2022), xlab = ’grades’, ylab = ’Frequency’,

+ main = ’Predicted grades’)
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If we run once again the same lines of codes, we get a slightly different frequencies
of numbers

> M2grades2022=sample(x = c(1: 5),

+ prob = c(5/110, 9/110,72/110 ,16/110, 8/110),

+ size = 100,

+ replace = TRUE)

> table(M2grades2022)

M2grades2022

1 2 3 4 5

4 10 62 15 9

13



3.2. Cards. We can easily simulate drawing card(s) from a deck.
The 52 deck is made of four suits, and each suit has 13 ranked cards: ace, king,. . . ,deuce.
We stored these cards in the data frame deck

> deck = data.frame(rank=rep(c("A","K","Q","J","T","9","8","7","6","5",

+ "4","3","2"),4),

+ suit=c(rep("Spade",13),rep("Heart",13),rep("Diamond",13),rep("Club",13)) )

If we want to simulate one hand of 7 cards, we can simulate 5 random numbers
(without replication) between 1 and 52, and the simulated numbers are rows of
deck

> x = sample(1:52,size=7)

> x

[1] 8 1 7 29 15 17 45

> hand = deck[x,]

> hand

rank suit

8 7 Spade

1 A Spade

7 8 Spade

29 Q Diamond

15 K Heart

17 J Heart

45 9 Club
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Assume now that we are drawing a 5 card hand from a deck of 52 cards
and let us denote the random variable

X = ”number of spades in the hand”.

In the next example we estimate distribution of the X.

Example 3.4. Simulate N = 10000 hands, count the number of spades in each
hand.

• Draw the histogram.
• Calculate the mean and standard deviation of the obtained data.

Let us first simulate in N = 10000 hands, and make the table of obtained
frequencies

> N=10000; dat = c();

> for (i in 1:N) {

+ x = sample(1:52,size=5); hand = deck[x,];

+ num_of_spades = sum(hand$suit=="Spade"); dat = append(dat,num_of_spades);

+ }

> table(dat)

dat

0 1 2 3 4 5

2147 4217 2740 795 99 2

Now we form the histogram
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> hist(dat, breaks=c(-0.5,0.5,1.5,2.5,3.5,4.5,5.5),

+ main="Simulated distribution of spades in N=10000 decks",

+ xlab="number of spades")

Simulated distribution of spades in N=10000 decks
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Estimated mean value of spades is

> mean(dat)

[1] 1.2488

and the standard deviation is

> sd(dat)

[1] 0.9149767

15



Distribution of spades
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Remark 3.5. The distribution of the random variable X is well known hyperge-
ometric distribution and

P (X = k) =

(
M

k

)(
N −M
n− k

)
/

(
N

n

)
, k = 0, 1, . . . , 5,

while

E[X] =
n ·M
N

, σ =
√
V ar(X) =

√
n ·M
N

N −M
N

N − n
N − 1

k
n− kM N −M

4. Testing of hypothesis

The goal of statistical reasoning is to draw conclusions from the observed data.
One way is to estimate certain parameters. Another approach, which is in fact an
equivalent problem, but slightly reformulated, is to start with an initial hypothe-
sis and then see if the observed data is in the accordance with this hypothesis or
whether it diverges significantly.
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The closest of the observed data to the initial, null hypothesis is done in the
following way: we first calculate test statistic which is a value calculated from the
observed data. The key thing about the test statistic is that we know its distri-
bution under the null hypothesis, i.e. if the null hypothesis holds then we know
what are the expected outcomes of the test statistic and with which probabilities.
Then we are in the position to judge how likely or unlikely is the occurrence of
the particular data we observed. The smaller the probability of the actual observed
data(or worse), we have more reasons to doubt the null hypothesis and to rejected it.

We will illustrate these concepts in more detail trough the following example.

Example 4.1. Traditional boat race between Oxford and Cambridge universities is
held every year. So far Cambridge has won 85 races and Oxford 81 races. Can we
conclude that both universities are equally successful, i.e. whether for each particular
boat race both universities are equally like to win?

The test statistics that we will use is the number of wins one of these colleges,
for example Cambridge.

X = ”number of wins of Cambridge ”

One approach to answer the question is to calculate the actual proportion of
wins of Cambridge, p̂ = 85/166 = 0.512, and to judge whether this is close enough
to one half, i.e. to hypothesized value of the parameter p = 0.5.
The other approach is to test whether the hypothesis that p = 0.5 is justified.

In each boat race we have two possible outcomes, the win of either Cambridge or
Oxford, and the boat race was held 166 times. Note, this is equivalent to repeating
an experiment with two possible outcomes, for example coin toss, for n = 166 times
and in each of these experiments the probability of the observed event, for example
the coin falls heads, is equal p = 0.5.

We can simulate in the number of heads in 166 coin tosses (or wins of
Cambridge in 166 boat races) with the following code.

> N=10000; wins = c();

> for (i in 1:N) {

+ wins_cambr=sum(sample(x = c(0: 1),

+ prob = c(0.5, 0.5),

+ size = 166,

+ replace = TRUE)); wins = append(wins,wins_cambr);

+ }

> hist(wins, breaks=seq(from=49.5, to=116.5, by=1),freq=FALSE)
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Remark 4.2. More generally, if we repeat an experiment n times and in each
of these experiments the probability of some observed random event is p, then the
random variable X that counts how many times the observed event occurred in these
n experiments has the so called binomial distribution:

P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n;

E[X] = np, V ar(X) = np(1− p).

Let us denote the parameter p = ”probability that Cambridge wins Oxford in one boat race”.

If the null hypothesis that p = 0.5 is true, then the distribution of the number
of wins of Cambridge has binomial distribution with parameters n = 166, p = 0.5.
The red highlighted bar is the probability of the actually observed value X = 85.
Notice that the observed value 85 is in the range of quite likely outcomes.

> n = 166; p = 0.5;

> boje=rep("gray",n+1);

> boje[[86]] = "red"

> barplot(dbinom(0:n,n,p), col=boje, space=0)

> par(mfrow=c(3,1))

> barplot(dbinom(0:n,n,0.4), col=boje, space=0)

> barplot(dbinom(0:n,n,p), col=boje, space=0)

> barplot(dbinom(0:n,n,0.6), col=boje, space=0)

> par(mfrow=c(1,1))

>
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For comparison, the next figure gives the distribution of wins of Cambridge under
three different null hypotheses: that p = 0.45, p = 0.5, p = 0.6. The horizontal
axes are aligned and red highlighted bar always represents the outcome 85 wins for
Cambridge. Notice that, in the contrast to the case p = 0.5, the outcome of 85 wins
is in the range of quite unlikely outcomes in the case of p = 0.45 (the first graph)
and p = 0.6 (the third graph).

> n =166; p = 0.5;

> n1 = 50; n2 =116;

> boje = rep("gray",n+1);

> barplot(dbinom(0:n,n,p), col=boje, space=0)

> boje[[86]] = "red"

> barplot(dbinom(n1:n2,n,p), col=boje[n1:n2], space=0)

> par(mfrow=c(3,1))

> barplot(dbinom(n1:n2,n,0.45), col=boje[n1:n2], space=0)

> barplot(dbinom(n1:n2,n,p), col=boje[n1:n2], space=0)

> barplot(dbinom(n1:n2,n,0.6), col=boje[n1:n2], space=0)

> par(mfrow=c(1,1))

>
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Let us now return to the originally tested hypothesis that p = 0.5. This hypot-
hesis influences on what outcomes of the test statistic we expect- namely we expect
Cambridge to win around half of the raises (i.e. X should be around 83 as one can
see in Figure 4). What outcomes would cause us the doubt the null hypothesis? If
Cambridge has too many wins compared to Oxford (i.e. we are on the right tail
of the distribution of X) or if Cambridge has to few wins compared to Oxford (i.e.
we are on the left tail of the distribution of X).

In general, how do we determine suspicious (critical) values of the test statistic
for which we deem the null hypothesis as too doubtful and rejected? We first
choose some (small) probability of error that we ready to tolerate. This probability
is called the level of significance and is usually denoted by α. In our case let us take
α = 0.05 and as we have commented before, since too small or too high values of
X are critical for null hypothesis, we will consider the α/2 = 0.025 smallest values
of X (i.e. on the left tail of its distribution) and the α/2 = 0.025 largest values of
X (i.e. on the right tail of its distribution) as the critical values of X for which we
reject the null hypothesis.

> alpha = 0.05;

> i1 = qbinom(alpha/2,n,p);

> i1

[1] 70

> i2 = qbinom(1-alpha/2,n,p);

> i2

[1] 96

> for (i in i1:i2) {boje[i] = "cyan"}

> barplot(dbinom(n1:n2,n,p), col=boje[n1:n2], space=0)

>
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In our case the boundaries for the critical values were 70 and 96; i.e. if Cam-
bridge had less than 70 or more than 96 wins, we would have the rejected the null
hypothesis.

Example 4.3. Are there more left-handers among elite tennis players than in the
general population? There are many studies about prevalence of the dominant hand
and the estimates of the left-handed people closely vary around 10%. For the group
that represents the elite tennis players we will take all tennis players who were
ranked among top 100 in the ATP rankings at least once in the 2010s decade. There
were altogether 310 such players of whom 46 were left-handed. The details on the
source of the data and our code can be found in the Appendix.

The test statistics that we use in this case

X = ”number of lefthanders in a group of 310 elite tennis players”

Similarly as in the previous example, for each tennis player in our sample we have
two possible outcomes - he is either left-handed or not. This time the probability,
i.e. the parameter p, is

p = probability that an elite tennis player is left handed

We want to test the null hypothesis that p = 0.1. If the null hypothesis is true,
then we would expect 10% of the players in our sample to be left-handed, i.e.
np = 0.1 · 310 = 31 player.

The way the question is formulated implies the null hypothesis is questionable
only if there are too many lefthanders in our sample, i.e. if the value of X is to
high. Therefore critical values of the test statistic X will be on its right tail.

If the null hypothesis holds, then the number of left handed tennis players X has
binomial distribution with n = 310 and p = 0.1.
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> n=310; p=0.1;

> alpha = 0.05;

> i1 = qbinom(1-alpha,size=n,prob=p);

> i1

[1] 40

> boje=rep("gray", n+1)

> for (i in 0:i1) {boje[i] = "cyan"}

> boje[[47]]="red";

> n1=15; n2=90;

> barplot(dbinom(n1:n2,n,p), col=boje[n1:n2], space=0)
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The blue colored bars represent the probabilities of the 95% smallest values of
X (non-critical values), the gray colored bars represent the probabilities of the 5%
highest values of X (critical values) and the (barely noticeable) red bar is the pro-
bability of the observed value X = 46. Since the observed value X = 46 is greater
than boundary of the critical area 40. We therefore reject the null hypothesis and
conclude that there is evidence of higher prevalence of lefthander among elite tennis
players.

We will use this example to introduce another important concept in statistical
hypothesis testing, the p−value. The p−value is the probability that, if the null-
hypothesis is true, we obtain the observed data or worse for the null hypothesis.
The smaller the p−value indicates that it is more unlikely that the null hypothesis
is true and that the observed data are obtained by chance, but rather that it is more
likely that null hypothesis is false. Reaching a decision on a statistical hypothesis
using the p−value is simple: if the p−value is small enough, i.e. less than some
small significance level α we have chosen, then we deem the null hypothesis as too
suspicious and we reject it. Otherwise, if the p−value is greater than α, we consider
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that the null hypothesis holds.

In our example, the greater the number of left-handed tennis players in our
sample means that the null hypothesis is less likely. Therefore, higher values of X
are worse for the null hypothesis, so we will calculate the p−value on the right tail
of the distribution of X.

> n=310; p=0.1;

> pvalue =sum(dbinom(47:n,size=n,prob=p));

> pvalue

[1] 0.002740603

> boje=rep("gray", n+1)

> for (i in 47:n+1) {boje[i] = "green"}

> n1=15; n2=90;

> barplot(dbinom(n1:n2,n,p), col=boje[n1:n2], space=0)
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The green highlighted bars represent the probabilities of the outcomes of X of 46
or higher and their sum is the p−value. Since the p−value 0.0027406 is very small,
we can safely reject the null hypothesis and conclude that there is significantly more
lefthanders among elite tennis players.
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5. Problems

Problem 5.1. Load again the database people2020.csv into dataframe in R.

a) Find all the people whose name contains string Hopkins

b) Find the row number of the dataframe which contains information on Anthony
Hopkins.
c) Read the Twitter username and birth date Anthony Hopkins from dataframe.

Problem 5.2. Count the number of people from the database people2020.csv

whose occupation is listed as: ”ACTOR”, ”SOCCER PLAYER”, ”POLITICIAN”
and ”RELIGIOUS FIGURE”, and draw the pie-chart of these counts.

Problem 5.3. We draw a five card hand from the deck of 52 cards. Simulate
N = 10000 such five card hand deals and estimate the probability of the following
random events:
a) the five card hand has exactly one ace;
b) based on these 10000 simulations estimate the average number of aces in a five
card hand
c) the five card hand has exactly two hearts and exactly one spade
d) calculate the exact probability of the random event from part c). Use the following
figure as a hint.

n− k1 − k2 k1 k2N −M1 −M2

M1

M2

Problem 5.4. Load the data from oscars.csv into an R dataframe oscars.
a) Calculate the mean and standard deviation of the age of the recipients for the
best actor and best actress award.
b) Find all the recipients who won the award more than once.

Problem 5.5. a) Simulate 15 throws of the dice and calculate the mean and the
standard deviation of these fifteen throws.
b) Repeat this procedure 1000 times, i.e. simulate 15 dice throws for 1000 times.
For each repetition calculate the mean value and standard deviation and store them
into arrays mean_values and sd_values

c) Calculate the mean values of the arrays mean_values and sd_values.
d) Draw the histograms of the arrays mean_values and sd_values.
e) Calculate the mean value and standard deviation for the theoretical model of dice
throw, i.e. for the random variable

X ∼
(

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

)
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6. Appendix

In the previous chapters we explained key features of commands we invoked
and in this appendix we will explain and comment more technical part of the code.
As you have seen is a command line software. For an easier use of , it is more
convenient to use with some editors, and we recommend RStudio.
RStudio allow us multiple windows to be simultaneously open and the user can, in
addition to command line prompt, keep track of, for example, variables declared,
data loaded,etc...

When needs to load data or anything else, it first searches for it in the so called
working directory. Working directory can be set with the command setwd("Location"),
for example

> setwd("C:/Users/Hogweed/Google disk/R/Vjezbe1")

The data can easily be loaded if it is stored in an appropriate form, for example
in .csv or .tab or Excel file. For example, the command

> #pantheon = read.csv("./Datasets/person2020.csv")

>

loads data stored in the file person2020.csv which is located in the sub folder
Datasets of the working directory. If the .csv file is already in the working di-
rectory one doesn’t need to give the whole path to the file. The data is loaded in
to the variable pantheon. This type of variable in the R syntax is called dataframe.

The data for Example 4.3 with left handed tennis players were taken from the
database maintained by Jeff Sackmann on the web page
https://github.com/JeffSackmann/

The extensive database contains information on tennis players, rankings, mat-
ches,... For our purposes we have downloaded the files atp_players.csv and
atp_rankings_10s.csv which contain information on tennis players and their ran-
kings in 2010s, respectively.

atp_players = read.csv('atp_players.csv')
atp_rankings_10s = read.csv('atp_rankings_10s.csv')

NA
atp_top_ranked = subset(atp_rankings_10s, rank <= 100)

Many players spend a lot of weeks ranked in top 100, so they would repeat many
times in the dataframe atp_top_ranked. The R command unique returns unique
values from an array and ignores repetitions, so the following command retrieves
all the player_ids of players who were ranked in the top 100 ATP positions at least
once and stores them in the array atp_to_ranked_ids

atp_top_ranked_ids = unique(atp_top_ranked$player)

The players in question can be retrieved with the command
subset(atp_players, player_id %in% atp_top_ranked_ids)

The information on the tennis player’s dominant hand is given in the column
hand, so the following table command returns frequencies of dominant hand for
tennis players in atp_top_ranked_ids
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table(subset(atp_players, player_id %in% atp_top_ranked_ids)$hand)

A L R U
0 46 264 0

As we can see, there were all together 310 players who were ranked among top
100 at least once in the 2010s, of which 46 were left handed and 264 right handed.
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Chapter 1

Vector algebra

Opening problem:

Figure 1.1:

A signpost gives information about distances and directions to towns or
to other locations relative to the location of the signpost. Distance is a scalar
quantity. Knowing the distance alone is not enough to get to the town; we
must also know the direction from the signpost to the town. The direc-
tion, together with the distance, is a vector quantity commonly called the
displacement vector. A signpost, therefore, gives information about displace-
ment vectors from the signpost to towns.

Vectors are essential to science and engineering. Many fundamental phys-
ical quantities are vectors, including displacement, velocity, force, and electric
and magnetic vector fields. In other words, vectors are a component part of
STEM in much the same way as sentences are a component part of literature.

3
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Vectors are Euclidean quantities that have geometric representations as
arrows in one dimension (in a line), in two dimensions (in a plane), or in
three dimensions (in space). They can be added, subtracted, or multiplied.
In this chapter, we explore elements of vector algebra and its application in
STEM.

1.1 Vectors and scalars

Quantities which can be specified completely by giving a single number and
the appropriate unit are called scalars. For example, ”the current tempera-
ture is 23 degrees”, or the ”This bag can hold a 5 kg of mass” are a scalar
quantities. Scalar is a synonym of “number.” Time, mass, distance, length,
volume, temperature, and energy are examples of scalar quantities.

Scalar quantities that have the same units can be added or subtracted
according to the usual rules of algebra for numbers. For example, if I have
70 kg weight, and you have 50 kg weight, together we have 120 kg weight.
We can multiply one scalar with other scalar, and also, we can divide one
scalar with another scalar (different than zero). The result is again scalar.

Many quantities, however, cannot be described completely by just a single
number of units. For example, when a helicopter goes for a rescue mission,
the rescue team must know not only the distance to the distress signal, but
also the direction from which the signal is coming so they can get to its origin
as quickly as possible. The quantities specified completely by giving a number
of units (magnitude) and a direction are called vector quantities. Examples
of vector quantities include displacement, velocity, position, force. In the
language of mathematics, vector quantities are represented by mathematical
objects called vectors. We can add or subtract two vectors, and we can
multiply a vector by a scalar or by another vector, but we cannot divide by
a vector. The operation of division by a vector is not defined.

Directed line segment presentation. We can represent a vector quan-
tity using a directed line segment or arrow. The length of the arrow represents
the vectors magnitude, and the arrowhead shows its directions.
Example 1.1.1. Draw a scale diagram to represent a force of magnitude
6
√

2N in a north-west position. See Figure 1.2.

Vector notation. Displacement is a general term used to describe a
change in position, such as during a trip from the tent to the fishing hole.
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Figure 1.2:

Displacement is an example of a vector quantity. We will use the displace-
ment to introduce the vector notation. If you walk from the tent (location
A) to the hole (location B), as shown in Figure 1.3, the vector ~a representing
your displacement, is drawn as the arrow that originates at point A and ends
at point B. The arrowhead marks the end of the vector. The direction of
the displacement vector ~a is the direction of the arrow. The length of the
arrow represents the magnitude |~a| of vector ~a. Here, |~a| = 6 km. Since the
magnitude of a vector is its length, which is a positive number, the magni-
tude is indicated by placing the absolute value notation around the symbol
that denotes the vector. We can denote a vector with ~AB and this is the

Figure 1.3:

vector that originates at A and terminates at B. The vector ~AB is called
displacement vector of B relative to A.

Vector equality. Two vectors are equal if they have the same magnitude
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and direction. Equal vectors are parallel, they have the same direction and
equal length. The arrows that represent them are translations of one another.
In Figure 1.4 we have three vector presentations of the same vector ~a.

Figure 1.4: Figure 1.5:

We can introduce the negative vector of ~AB and denoted with ~BA, and
that is the vector parallel to ~AB, the same length, but the opposite direction,
see Figure 1.5.

Vector addition and multiplication by scalar. Two vectors (or
more) can be added and they give the resultant vector. Vector addition is
commutative and associative. To construct a resultant vector of two vectors
in a plane geometrically, we use the parallelogram rule, see Figure 1.6. When

Figure 1.6: Figure 1.7:
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a vector is multiplied by a scalar, the result is another vector of a different
length than the length of the original vector. Multiplication by a positive
scalar does not change the original direction; only the magnitude is affected.
Multiplication by a negative scalar reverses the original direction, see Figure
1.7.

To make an exercise in addition od vectors and multiplication by scalar
we use the interactive simulator for science and math, PheT developed by
the University of Colorado, see on https://phet.colorado.edu/en/.

Example 1.1.2. Susan and Leo are pushing a heavy trolley containing gro-
ceries. Susan pushes the trolley with force 9.5N in the direction 18.4◦, and
Leo pushes the trolley with force 8.9N in the direction −26.6◦. Use the scale
diagram to estimate the resulting force from the two girls pushing.

We can see the resulting force on Figure 1.8.

Figure 1.8:

Example 1.1.3. An adventurous cat strays from home, runs three blocks
east, two blocks north, one block east, one block north, and two blocks west.
Assuming that each block is about 100 m, how far from home and in what
direction is the cat? Use a graphical method.

The resulting displacement of the dogs run is given on Figure 1.9. We can
see that the dog is

√
13× 100 meters far from home in north-east direction.

1.2 Vectors in space

In three-dimensional space, vector ~a has three vector components: the x-
component ~ax = a1~i , which is the part of vector ~a along the x-axis; the
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Figure 1.9:

y-component ~ay = a2~j , which is the part of vector ~a along the y-axis; and

the z-component ~az = a3~k , which is the part of vector ~a along the z-axis.
A vector in three-dimensional space is the vector sum of its three vector
components:

~a =

 a1
a2
a3

 = a1~i+ a2~j + a3~k .

Three unit vectors~i, ~j and ~k define a Cartesian system in three-dimensional

space: ~i =

 1
0
0

 is the base unit vector in the x-direction, ~j =

 0
1
0

 is

the base unit vector in the y-direction, and ~k =

 0
0
1

 is the base unit

vector in the z-direction.

Example 1.2.1. On the Figure 1.10 we have presented the vector ~v = 5
2
5

 = 5~i+ 2~j + 5~k .

If we know the coordinates A(x1, y1, z1) of the origin point of a vector
and the coordinates B(x2, y2, z2) of the end point of a vector, we can obtain
the scalar components of a vector simply by subtracting the origin point
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Figure 1.10:

coordinates from the end point coordinates, and the vector will be:

~AB =

 x2 − x1
y2 − y1
z2 − z1

 .

The magnitude (or sometimes we call it the lenght) of the vector ~a =

 a1
a2
a3


is:

|~a| =
√
a21 + a22 + a23 .

Example 1.2.2. A fly enters through an open window and zooms around the
room. In a Cartesian coordinate system with three axes along three edges of
the room, the fly changes its position from point A(1, 2, 3) to point B(5, 5, 7).
Find the scalar components of the fly’s displacement vector and express its
displacement vector in vector component form. What is its magnitude?

The displacement vector will be:

~AB =

 5− 1
5− 2
7− 3

 ==

 4
3
4

 .
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Its magnitude will be:

| ~AB| =
√

(4)2 + 32 + (4)2 =
√

16 + 9 + 16 =
√

41 .

Figure 1.11:

In Geogebra (see https://www.geogebra.org/m/j28dfqtm) there is a Pac
Man demonstration on Vector Components (by Tim Brzezinski). It is an
excellent exercise on creating the vector between two point, as you can see
in the following videos.

1.3 Operation with vectors

Two vectors are equal when their corresponding scalar components are equal.
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Resolving vectors into their scalar components (i.e., finding their scalar
components) and expressing them analytically in vector component form
allows us to use vector algebra to find sums or differences of many vectors
analytically (i.e., without using graphical methods). For example, to find

the resultant of two vectors ~a and ~b, we simply add them component by

component. If ~a =

 a1
a2
a3

 and ~b =

 b1
b2
b3

 then:

~a+~b =

 a1 + b1
a2 + b2
a3 + b3

 .

If λ is a given scalar, then we have:

λ~a = λ

 a1
a2
a3

 =

 λa1
λa2
λa3

 .

Analytical methods for finding the resultant and, in general, for solving
vector equations are very important in physics because many physical quan-
tities are vectors. For example, we use this method in kinematics to find
resultant displacement vectors and resultant velocity vectors, in mechanics
to find resultant force vectors and the resultants of many derived vector quan-
tities, and in electricity and magnetism to find resultant electric or magnetic
vector fields.

Unit vector.
Given a non zero vector ~a its magnitude |~a| is a scalar quantity. If we

multiply ~a with the scalar
1

|~a|
we obtain the parallel vector to

1

|~a|
~a. The

magnitude (length) of this vector is 1:∣∣∣∣ 1

|~a|
~a

∣∣∣∣ =
1

|~a|
|~a| = 1 ,

so the vector
1

|~a|
~a is a unit vector in the direction of ~a, see Figure 1.12. We

usually denote this vector with ~a0.
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Figure 1.12:

Example 1.3.1. At one point in space, the direction of the electric field
vector is given in the Cartesian system by the unit vector ~E0 = 1√

5
~i + 2√

5
~j .

If the magnitude of the electric field vector is E = 400 V/m, what are the

scalar components Ex, Ey and Ez of the electric field vector ~E at this point?
What is the direction angle θ of the electric field vector at this point?

Since the unit vector is given, we know the direction of ~E, and we have

~E = | ~E| ~E0 = 400 ~E0

 400√
5

800√
5

0

 . For the direction angle (simple trigonometry)

we have tan θ = 160
80

and θ = arctan 2 .

Example 1.3.2. Two forces are given: ~F1 =

 1
1
1

 and ~F2 . Second force

has a magnitude 6 and direction same as the vector ~a =

 1
2
−2

 . Both of

the forces act on one particle. Find the direction of the third force, so that
the resulting force is 0?

First we will determine the second force ~F2 . Using the fact that ~F2 has
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the direction of the vector ~a =

 1
2
−2

 we have:

~F2 = α~a =

 α
2α
−2α

 .

Next, to determine α we use the known magnitude of ~F2 and we have:

√
α2 + 4α2 + 4α2 = 3|α| = 6.

From this, α = 2 and ~F2 =

 2
4
−4

.

At the end, we want to determine the third force ~F3. Then:

~F1 + ~F2 + ~F3 = ~0 ,

and from this vector equation we have:

~F3 = −~F1 − ~F2 =

 −1
−1
−1

−
 2

4
−4

 =

 −3
−5
3

 .
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Chapter 2

Products of two vectors

A vector can be multiplied by another vector but may not be divided by
another vector. There are two kinds of products of vectors used broadly in
physics and engineering. One kind of multiplication is a scalar multiplication
of two vectors. Taking a scalar product of two vectors results in a number (a
scalar), as its name indicates. Scalar products are used to define work and
energy relations. For example, the work that a force (a vector) performs on an
object while causing its displacement (a vector) is defined as a scalar product
of the force vector with the displacement vector. A quite different kind of
multiplication is a vector multiplication of vectors. Taking a vector product
of two vectors returns as a result a vector, as its name suggests. Vector
products are used to define other derived vector quantities. For example, in
describing rotations, a vector quantity called torque is defined as a vector
product of an applied force (a vector) and its distance from pivot to force
(a vector). It is important to distinguish between these two kinds of vector
multiplications because the scalar product is a scalar quantity and a vector
product is a vector quantity.

2.1 The scalar product of two vectors

The scalar product of two vectors is also known as dot product or inner
product. It an operation between two vectors that results with a scalar. Be
careful not to confuse the scalar product ( a product of two vectors that give
a scalar) with the scalar multiplication ( a product of a scalar and a vector
that gives a parallel vector).

15
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If two vectors ~a =

 a1
a2
a3

 and~b =

 b1
b2
b3

 are given, their scalar product

is:

~a ·~b =

 a1
a2
a3

 ·
 b1

b2
b3

 = a1b1 + a2b2 + a3b3 .

Scalar multiplication of vectors is commutative, associative and obeys the
distributive law. Other important property is that if we multiply ~a with ~a,
then the scalar we obtain is the squared lenth of the vector ~a, i.e.:

~a · ~a =

 a1
a2
a3

 ·
 a1

a2
a3

 = a21 + a22 + a23 = |~a|2 .

We can use the scalar product of two vectors to determine the angle between
them. Supose θ is the angle between ~a and ~b, see the Figure 2.1. Using the

Figure 2.1:

cosine rule
|~b− ~a|2 = |~a|2 + |~b|2 − 2|~a||~b| cos θ

we have that:

(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2 = a21 + a22 + a23 + b21 + b22 + ab23 − 2|~a||~b| cos θ

2a1b1 + 2a2b2 + 2a3b3 = 2|~a||~b| cos θ

~a ·~b = |~a||~b| cos θ

From the last equation we see that the angle between two vectors can be
found by folowing relation:

cos θ =
~a ·~b
|~a||~b|

.
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Now, because of the properties of the cos-function we see that for the nonzero
vectors ~a and ~b we have

� ~a ·~b = 0 ⇔ ~a and ~b are perpendicular.

� ~a ·~b = |~a||~b| ⇔ ~a and ~b are paralel vectors.

� If θ is the angle between ~a and ~b then for θ acute angle we have ~a ·~b > 0
and for θ obtuse angle we have ~a ·~b < 0 .

Example 2.1.1. Find the angle between vectors ~a = 3~i−4~j and ~b = 3~i+4~j .

We find the scalar product of the vectors, and their magnitudes.

~a ·~b = 3 · 3 + (−4) · 4 = 9− 16 = −7

|~a| =
√

32 + (−4)2 = 5

|~b| =
√

32+)2 = 5 .

The angle between the vectors is:

cos θ =
~a ·~b
|~a||~b|

=
−7

25
.

Angle between two forces
The angle between two forces is the angle between the vector of the forces.

Example 2.1.2. Two dogs are pulling on a stick in different directions. The
first dog pulls with force ~F1 = 10~i − 20.4~j + 2~k N, the second dog pulls with
force ~F2 = −15~i− 6.2~k N. What is the angle between ~F1 and ~F2?

We will use the scalar product of ~F1 and ~F2 to find the angle between the
forces.

~F1 · ~F2 = 10 · (−15)− 20.4 · 0− 2 · 6.2 = −162.4 .

On the other hand we have:

| ~F1| =
√

102 + (−20.4)2 + 22 =
√

520.16 = 22.81

~|F2| =
√

(−15)2 + (−6.2)2 + 02 =
√

263.44 = 16.23.
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At the end,

cos θ =
~F1 · ~F2

| ~F1|| ~F2|
=

−162.4

22.81 · 16.23
= −0.437 ,

and the angle is θ = arccos(−0.437) = 116◦ .

A work of a force. When force ~F pulls on an object and when it causes
its displacement ~d, we say the force performs work. The amount of work the
force does is the scalar product ~F · ~d .
Example 2.1.3. If the stick in the example before moves momentarily and
gets displaced by vector ~d = −7.9~j − 4.2~k cm, how much work is done by the
second dog?

With the application of the dot product for the work done by the second
dog we got:

~F2 · ~d = (−15) · 0 + 0 · (−7.9) + (−6.2) · (−4.2) = 26.04Ncm .

2.2 The vector product of two vectors

The vector product of two vectors is also known as cross product. It is an
operation between two vectors that results with a third vector. The vector
product is a vector that has its direction perpendicular to both vectors ~a and
~b. In other words, vector ~a ×~b is perpendicular to the plane that contains
vectors ~a and ~b as shown in Figure 2.2. The magnitude of the vector product

Figure 2.2:

is defined as |~a×~b| = |~a||~b| sin θ , where θ is the angle between the vectors ~a
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and ~b. On the line perpendicular to the plane that contains vectors ~a and ~b
there are two alternative directions—either up or down, and the direction of
the vector product may be either one of them. In the standard right-handed
orientation, where the angle between vectors is measured counterclockwise
from the first vector, vector ~a ×~b points upward. If we reverse the order of
multiplication, so that now ~b comes first in the product, then vector ~b × ~a
must point downward. This means that vectors ~a×~b and~b×~a are antiparallel
to each other and that vector multiplication is not commutative.

~a×~b = −~b× ~a .

Similar to the dot product, the cross product has the distributive prop-
erty. For the base vectors we have following, see Figure 2.3.

~i×~j = ~k,~j × ~k =~i,~k ×~i = ~j
~j ×~i = −~k,~k ×~j = −~i,~i× ~k = −~j .

Figure 2.3:

If two vectors ~a =

 a1
a2
a3

 and ~b =

 b1
b2
b3

 are given, their vector
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product (the component form) is:

~a×~b =

 a1
a2
a3

×
 b1

b2
b3

 =

∣∣∣∣∣∣
~i ~j ~k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ .
Using the definition above, we can easily conclude that two vectors ~a and

~b are parallel if and only if ~a×~b = 0 . Also, this property can be easily proven
from the relation |~a ×~b| = |~a||~b| sin θ , since ~a and ~b are parallel if and only
if sin θ = 0, i.e., θ = 0 or θ = π . Special case is ~a× ~a = 0 .

The relation |~a × ~b| = |~a||~b| sin θ , is used very often to find the area of

triangle ar parallelogram. If the triangle has a defining vectors ~a and ~b , see
Figure 2.4, then:

Figure 2.4:

P =
1

2
|~a||~b| sin θ =

1

2
|~a×~b| .

From the last equation, if a parallelogram has a defining vectors ~a and ~b , its
area will be P = |~a×~b| .
Example 2.2.1. Given two vectors ~a = −~i + ~j and ~b = 3~i − ~j find ~a ×~b,
|~a×~b|, the angle between ~a and ~b, and the angle between ~a×~b and ~c =~i+~k .

We have

~a×~b =

∣∣∣∣∣∣
~i ~j ~k
−1 1 0
3 −1 0

∣∣∣∣∣∣ = −2~j;

|~a×~b| =
√

(−2)2 = 2;

cos θ =
~a ·~b
|~a||~b|

=
−3− 1√

2
√

10
= − 4√

20
;

cosα =
3

2
√

2
.
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A Particle in a Magnetic Field
When moving in a magnetic field, some particles may experience a mag-

netic force. Without going into details let’s acknowledge that the magnetic
field ~b is a vector, the magnetic force ~F is a vector, and the velocity ~v of
the particle is a vector. The magnetic force vector is proportional to the
vector product of the velocity vector with the magnetic field vector, which
we express as ~F = ζ~v ×~b . In this equation, a constant ζ takes care of the
consistency in physical units, so we can omit it here.

Example 2.2.2. A particle moving in space with velocity vector ~v = −5~i−
2~j + 3.5~k enters a region with a magnetic field and experiences a magnetic
force. Find the magnetic force ~F on this particle at the entry point to the
region where the magnetic field vector is ~b = 7.2~i−~j−2.4~k . find magnitude of
the magnetic force and angle θ the force vector makes with the given magnetic
field vector.

We have:

~F = ~v ×~b =

∣∣∣∣∣∣
~i ~j ~k
−5 −2 3.5
7.2 −1 −2.4

∣∣∣∣∣∣ = 8.3~i+ 13.2~j + 19.4~k;

|~F | =
√

8.32 + 13.22 + 19.42 = 24.9;

cos θ =
~F ·~b
|~F ||~b|

=
8.3 · 7.2− 13.2− 2.4 · 19.4

24.9 · 7.6
= 0.
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Chapter 3

Vector application

There are many application of vectors in geometry. In three dimensional
space, vector methods are very efficient, particulary when we consider the
relationships between lines and planes.

3.1 Lines in space

We can determine the equation of a line in three dimensional space using its
direction and any fixed point on the line. Suppose R(x, y, z) is any point on

the line, A(a1, a2, a3) is the known or fixed point on the line, and~b =

 b1
b2
b3


is the direction vector of the line, see Figure 3.1.

Figure 3.1:

23
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The vector equation of the line is:

~r =

 x
y
z

 =

 a1
a2
a3

+ λ

 b1
b2
b3

 .

The parametric equation of the line is:
x = a1 + λb1
y = a2 + λb2
z = a3 + λb3

where λ ∈ R is a parameter.
By equating λ values, we obtain the Cartesian equations of the line:

x− a1
b1

=
y − a2
b2

=
z − a3
b3

.

Note that one line can be represented with different vectors (but collinear
one) and different points, so the vector equation of a line is not unique.

Example 3.1.1. Find the parametric equations for the line trough A(2,−1, 4)
and B(−1, 0, 2) .

We require the direction vector for the line, and this could be the vector

~AB or ~BA. We have that ~AB =

 −3
1
−2

, and using point A the equations

are: 
x = 2− 3λ
y = −1 + λ
z = 4− 2λ

We could use the point B to make the parametric equations of the line.

Angle between lines. The angle between two lines is the angle between
its directional vectors. We can find the angle using the scalar product of the
vectors. If ~b1 and ~b2 are directional vectors of the lines L1 and L2, then the
angle between them will be:

cos θ =
~b1 · ~b2
|~b1||~b2|

.
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Example 3.1.2. Find the angle between the lines

L1 : ~r =

 2
−1
4

+ λ

 −3
1
−2


L2 :

1− x
3

= y =
2− z

2
.

The line L1 has a directional vector ~b1 =

 −3
1
−2

 and the line L2 has a

directional vector ~b1 =

 3
−1
2

 . Since the vectors are colinear, the lines are

parallel and the angle between them its 0.

Constant velocity problems. An object moving with a constant ve-
locity will travel in a straight line. To model the position using vectors:

� the velocity vector of the motion gives the direction vector of the line,

� time is the parameter,

� the initial position of the object gives a fixed point in the line.

The speed of the object is the magnitude of the velocity vector.

Example 3.1.3. A mermaid is initially at the point A(15, 8,−1) and she

swims with the velocity vector ~v = 3~i − 5~j − 4.5~k m/s . Find: the position
of the mermaid after t seconds, the speed of the mermaid, the time when the
mermaid reaches 28 meters depth.

Since we know one point of the line (initial coordinates) and the direction
vector (velocity vector), after t seconds the mermaid will be at the possition:

~r(t) =

 15 + 3t
8− 5t
−1− 4.5t

 .

The speed of the mermaid is |~v| =
√

32 + (−5)2 = (−4.5)2 = 7.37m/s . The
mermaid reaches 28 meters of depth when z(t) = −28 . We have that −1 −
4.5t = −28 and from here t = 6 seconds.
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A shortest distance from a point to the line. We will consider this
item trough a following example.

Example 3.1.4. Consider point P (−1, 2, 3) and the line with parametric
equations L1 : x = 1 + 2t, y = −4 + 3t, z = 3 + t. Find the shortest distance
from P to L1.

Let us have a point A at the given line. Then its coordinates will be
A(1 + 2t,−4 + 3t, 3 + t). Then the vector ~AP will be:

~AP =

 −1− 1− 2t
2 + 4− 3t
3− 3− t

 =

 −2− 2t
6− 3t
−t

 .

If A is the closes point of the line to P , then ~AP ⊥ ~b and their scalar product
equals 0. Since ~b = 2~i+ 3~j + ~k, from the condition ~AP ·~b = 0 , we have:

~AP ·~b =

 −2− 2t
6− 3t
−t

 ·
 2

3
1

 = −4− 4t+ 18− 9t− t = 0 .

At the end we got that t = 1 and A(3,−1, 4). The wanted distance is the

magnitude of the vector ~AP ,

| ~AP | =

∣∣∣∣∣∣
 −4

3
−1

∣∣∣∣∣∣ =
√

16 + 9 + 1 =
√

26 .

Relationships between lines. Lines in the space are coplanar if they
are in the same plane. In this case they can be intercepting, parallel or
coincident, see Figure 3.2. Let two lines L1 and L2 be given with their
direction vectors ~b1 and ~b2 respectively. We can check if the lines are coplanar
or not by evaluating the dot product of the vector ~AB (A is a point on L1

and B is a point on L2), and the vector ~b1× ~b2. If this product is 0, than the
lines are coplanar, if not the lines skew. We calculate the angle between two
lines in space using the scalar product of the direction vectors of the lines.
If the lines are parallel, the angle between them is 0, otherwise, the angle
between them is θ.

If the lines are not coplanar they are skew, see Figure 3.3. If the lines are
skew, then the angle between them is again the angle between the directional
vectors.
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Figure 3.2:

Figure 3.3:

Example 3.1.5. Consider the lines:

L1 : ~r =

 5
4
4

+ λ

 −2
−3
4


L2 : ~r =

 1
−4
14

+ λ

 0
−2
2

 .

Show that this lines intercept, and give the coordinates of the interception
point.

The direction vectors of the lines are: ~b1 =

 −2
−3
4

 and ~b2 =

 0
−2
2

.

We have:

~b1 × ~b2 =

∣∣∣∣∣∣
~i ~j ~k
−2 −3 4
0 −2 2

∣∣∣∣∣∣ = 2~i+ 4~j + 4~k .
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The vector ~AB = −4~i− 8~j + 10~k, so for the dot product we have:

~AB · ~b1 × ~b2 = 2(−4) + 4(−8) + 4 · 10 = 0 .

The lines are coplanar, but not parallel (since the direction vectors are not
colinear), and they intercept. The point of interception is on the both lines,
but it is got for a diferent parameter. That is why we have the sysytem:

5− 2λ = 1

4− 3λ = −4− 2µ

4 + 4λ = 14 + 2µ

We got that λ = 2 and µ = −1, so the interception point is (1,−2, 12).

The shortest distance between lines. If lines are parallel, we choose
any point at one of the lines and find the shortest distance to the other line,
see Figure 3.4. If the lines intercept, the distance between them is zero. If

Figure 3.4:

the lines are skew, we need to find two points A and B, one on each line, so
the vector ~AB is perpendicular to both skew lines, see figure 3.5. It is clear
that ~AB is parallel to ~b1 × ~b2 , and we have ~AB = k · ~b1 × ~b2 where ~b1 and ~b2
are the direction vector of the lines. The distance is the length of ~AB.

Example 3.1.6. Find the shortest distance between the skew lines x = t, y =
1− t, z = 2 + t and x = 3− t, y = −1 + 2t, z = 4− t .

The direction vectors of the lines are: ~b1 =

 1
−1
1

 and ~b2 =

 −1
2
−1

 .
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Figure 3.5:

For the vector product we have:

~b1 × ~b2 =

∣∣∣∣∣∣
~i ~j ~k
1 −1 1
−1 2 −1

∣∣∣∣∣∣ = −~i+ ~k .

Let A and B be two points, one on each line, so the distance | ~AB| is the

shortest between the lines. Now ~AB‖ · ~b1 × ~b2, i.e.: 3− µ− λ
−1 + 2µ− 1 + λ

4− µ− 2− λ

 = k

 −1
0
1

 .

From this system we have that λ = 3, so A = (3,−2, 5) and µ = −1
2
, so

B(7
2
,−2,−9

2
). The shortest distance between the skew lines is:

| ~AB| =

∣∣∣∣∣∣
 1

2

0
−1

2

∣∣∣∣∣∣ =

√
1

4
+

1

4
=

1√
2
.

3.2 Planes

Let A(a1, a2, a3) is a point from a given plane, and P (x, y, z) is any point

from that plane. Than the vector ~AP =

 x− a1
y − a2
z − a3

 lies entirely inside the



30 CHAPTER 3. VECTOR APPLICATION

Figure 3.6:

plane. Let ~n be a vector with direction perpendicular to that of the plane,
see Figure 3.6. Since ~n and ~AP are perpendicular, their scalar product is
zero. We have:

~n · ~AP =

 A
B
C

 ·
 x− a1

y − a2
z − a3

 = A(x− a1) +B(y − a2) + C(z − a3) = 0 ,

is the plane equation.

Example 3.2.1. Find the equation of the plane with a normal vector ~n = 1
2
3

 which passes trough the point A(−1, 2, 4) .

Since ~AP =

 x+ 1
y − 2
z − 4

 , for the equation of the plane we have:

~n · ~AP =

 1
2
3

 ·
 x+ 1

y − 2
z − 4

 = (x+ 1) + 2(y − 2) + 3(z − 4) = 0,

i.e. x+ 2y+ 3z− 15 = 0 . When a line is given, it can meets a plane in some
point, it can be parallel to the plane, or it can entirely lies in the plane.

Example 3.2.2. Find the parametric equations of the line trough A(−1, 2, 3)
and B(2, 0,−3). Hence find where this line meets the plane with the equation
x− 2y + 3z = 26.
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~AB =

 3
−2
−6

 and the parametric equations of the line trough A and

B is x = −1 + 3t, y = 2− 2t, z = 3− 6t . The plane meets the line when:

x− 2y + 3z = 26

−1 + 3t− 2(2− 2t) + 3(3− 6t) = 26

4− 11t = 26

t = −2 .

Substituting t = −2 in the line equation, we got the intersection point of the
line and the plane, (−7, 6, 15).

Distance from a point to a plane. Let d be the distance from a point
P1(x1, y1, z1) to a given plane Ax+ By + Cz = D, see Figure 3.7. Let Q be

Figure 3.7:

any point from that plane. Then d = | ~QP ·~n|
|~n| . From this equation we have:

d =
|A(x− x1) +B(y − y1) + C(z − z1)|√

A2 +B2 + C2
=
|Ax1 +By1 + Cz1 +D|√

A2 +B2 + C2
,

an this is how we evaluate the distance between a point and a plane.

Example 3.2.3. Show that the line x = 2+t, y = −1+2t, z = −3t is parallel
to the plane 11x− 4y + z = 0 , and find its distance from the plane.

When a line is parallel to a plane or it lies entirely in the plane its di-
rectional vector ~b is perpendicular to the normal vector ~n of the plane. In
this case ~b · ~n = 1 · 11 + 2 · (−4) + (−3) · 1 = 0 , so this condition is fulfill.
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To check whether the line lies in the plane or it is parallel to it, we take any
point from the line and check if it belongs to the plane. So,

11x− 4y + z = 0

11(2 + t)− 4(−1 + 2t)− 3t = 0

22 = 0 .

The last equation is not possible, so there is no point from the line that meets
the plane. The line is parallel to the plane.

In order to find the distance, we pick any point from the line, let say for
t = 0 we have A(2,−1, 0) and using the distance formula we have:

d =
|Ax1 +By1 + Cz1 +D|√

A2 +B2 + C2
=
|11 · 2− 4 · (−1) + 0|√

112 + (−4)2 + 12
=

26√
138

.

Angles in space. The angle between line and a plane is the angle
between the direction vector of the line and the normal vector of the plane.
The angle between two planes in space is the angle between the normal
vectors of the planes. We can use the scalar product to find these angles.

Example 3.2.4. Find the angle between the planes with equations x+y−z =
8 and 2x− y + 3z = −1 .

Since ~n1 =

 1
1
−1

 and ~n2 =

 2
−1
3

 we have:

cos θ =
~n1 · ~n2

| ~n1|| ~n2|
=
|2− 1− 3|√

3
√

14
=

2√
3
√

14
.

Intercepting planes. Two planes in space can intercept, be parallel,
or coincident, see Figure 3.8. Three planes in space could have one of the
following eight arrangements, see Figure 3.9. To determine the relationship
between the planes, we have to solve linear system of three equation. We
will illustrate this on the following example, using row operations.

Example 3.2.5. Solve the following system of linear equations. Give a geo-
metric interpretation of the system.

2x− y + z = 5
x+ y − z = 2

3x− 3y + 3z = 8
.
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Figure 3.8:

Figure 3.9:

In augmented matrix form the system is: 1 1 −1 | 2
2 1 −1 | 5
3 −3 3 | 8


 1 1 −1 | 2

0 −3 3 | 1
0 −6 6 | 2


 1 1 −1 | 2

0 1 −1 | −1
3

0 0 0 | 0

 .
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The row of zeroes indicates infinetely many solutions. If we let z = t in
the second equation, we have y = t − 1

3
. From the firs equation we got

x = 2−y+z = 2−t+ 1
3
+t = 7

3
. The solution has form x = 7

3
, y = t− 1

3
, z = t,

which is obviosly a line in space. So, the system represents three planes that
intercept in a line.
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Exit ticket

1. Which of the following is a vector: a person’s height, the altitude on
Mt. Everest, the velocity of a fly, the age of Earth, the boiling point
of water, the cost of a book, Earth’s population, or the acceleration of
gravity?

2. Give a specific example of a vector, stating its magnitude, units, and
direction.

3. Suppose you add two vectors ~a and ~b. What relative direction between
them produces the resultant with the greatest magnitude? What is the
maximum magnitude? What relative direction between them produces
the resultant with the smallest magnitude? What is the minimum
magnitude?

4. Is it possible for two vectors of different magnitudes to add to zero?
Is it possible for three vectors of different magnitudes to add to zero?
Explain.

5. Can a magnitude of a vector be negative?

6. If two vectors are equal, what can you say about their components?
What can you say about their magnitudes? What can you say about
their directions?

7. If three vectors sum up to zero, what geometric condition do they
satisfy?

35



36 CHAPTER 4. EXIT TICKET

8. A delivery man starts at the post office, drives 40 km north, then 20 km
west, then60km northeast, and finally 50 km north to stop for lunch.
Use a graphical method to find his net displacement vector.

9. A small plane flies 40 km in a direction 60◦ north of east and then
flies 30 km in a direction 15◦ north of east. Use a graphical method to
find the total distance the plane covers from the starting point and the
direction of the path to the final position.

10. Explain why a vector cannot have a component greater than its own
magnitude.

11. If two vectors have the same magnitude, do their components have to
be the same?

12. Suppose you walk 18.0 m straight west and then 25.0 m straight north.
How far are you from your starting point? What is your displacement
vector? What is the direction of your displacement? Assume the x-axis
is horizontal to the right.

13. Given two vectors ~a =

 1
2
−1

 , and ~b =

 3
2
−1

 , find the vectors

~a+~b and ~a− 2~b. Determine the magnitudes of these vectors.

14. In the control tower at a regional airport, an air traffic controller mon-
itors two aircraft as their positions change with respect to the control
tower. One plane is a cargo carrier Boeing 747 and the other plane is
a Airbus a380. The Boeing is at an altitude of 2500 m, climbing at 10◦

above the horizontal, and moving 30◦ north of west. The Airbus is at
an altitude of 3000 m, climbing at 5◦ above the horizontal, and cruis-
ing directly west. (a) Find the position vectors of the planes relative to
the control tower. (b) What is the distance between the planes at the
moment the air traffic controller makes a note about their positions?

15. Find the angle between vectors ~a = 3~i− 4~j + ~k and ~b = 3~i+ 4~j − ~k .

16. Find the angle that the vector ~d =~i− 2~j + ~k makes with the x, y and
z axes.
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17. Vectors ~a and~b have the magnitudes of 5 units. Find the angle between
them if ~a+~b = 5

√
2~j .

18. If the cross product of two vectors vanishes, what can you say about
their directions?

19. If the dot product of two vectors vanishes, what can you say about
their directions?

20. What is the dot product of a vector with the cross product that this
vector has with another vector?

21. If the velocity vector of a polar bear is ~v = −18~i − 13~j km/h, how
fast and in what geographic direction is it heading? Here, ~i and ~j are
directions to geographic east and north, respectively.

22. Given two vectors ~a = −~i + 2~j − ~k and ~b = 3~i − ~k find ~a ×~b, |~a ×~b|,
the angle between ~a and ~b, and the angle between ~a×~b and ~c =~i+ 2~j .

23. Starting at the island of Moi in an unknown archipelago, a fishing boat
makes a round trip with two stops at the islands of Noi and Poi. It
sails from Moi for 4.76 nautical miles (nmi) in a direction 37◦ north of
east to Noi. From Noi, it sails 69◦ west of north to Poi. On its return
leg from Poi, it sails 28◦ east of south. What distance does the boat
sail between Noi and Poi? What distance does it sail between Moi and
Poi? Express your answer both in nautical miles and in kilometers.
Note: 1 nmi = 1852 m.

24. A particle moving in space with velocity vector ~v = −5~i − 2~j + 3.5~k
enters a region with a magnetic field and experiences a magnetic force.
Find the magnetic force ~F on this particle at the entry point to the
region where the magnetic field vector is ~b = 4~k . find magnitude of
the magnetic force and angle θ the force vector makes with the given
magnetic field vector.

25. Show that ~a · (~b × ~c) is the volume of the parallelepiped, with edges
formed by the three vectors.

26. Find the volume of the parallelepiped, with edges formed by the fol-
lowing vectors: ~a = −~i+~j + 3~k, ~b = 4~j i ~c = −3~i+ 2~j + 1~k.
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27. Find the equations for the line trough A(−2,−1, 4) and B(1, 0, 3) .

28. A helicopter at A(6, 9, 3) moves with constant velocity. Ten minutes

later it is at B(3, 10, 2.5). Distances are in kilometers. Find: ~AB, the
speed of the helicopter, and determine the line equation that represents
the helicopters path. The helicopter is traveling directly to its land-
ing position with a z coordinate 0. Find the total time taken for the
helicopter to land. At what angle to the horizontal is the helicopter
flying?

29. A diver swims from (12, 25,−20) back to his boat at (7,−15, 0), at
speed of 0.9 m/s. Find the velocity vector of the diver. An octopus
watches the diver from his home at (12,−8,−5). At what time the
diver is closest to the octopus? Find the shortest distance from the
octopus to the diver.

30. Suppose we have two particles in space. Particle A’s position after t
seconds is given by xA(t) = 5 − 2t, yA(t) = 4 − 3t, zA(t) = 4 + 4t .
Particle B’s position after t seconds is given by xB(t) = 1, yB(t) =
−4− 2t, zB(t) = 14 + 2t . All distance units are meters. Find the initial
position of each particle. Find the velocity vector of each particle. Will
the particles collide? Explain your answer.

31. Find the shortest distance between the skew lines x = 1 + 2t, y =
−t, z = 2 + 3t and x = y = z .

32. Find the equation of the plane troughA(−1, 2, 0), B(3, 1, 1) and C((1, 0, 3).

33. Find the parametric equations of the line trough P (1,−2, 4) andQ(2, 0,−1).
Hence find where this line meets the y0z plane, and plane with the
equation y + z = 2.

34. Find the equations of two planes parallel to 2x−y2z = 5 and two units
from it.

35. The planes x + 5y − 3z = 8 and 2x + 2y + kz = 9 are perpendicular.
Find the value of k.
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36. Solve the following system of linear equations. Give a geometric inter-
pretation of the system.

x+ 3y − z = 15
2x+ y + z = 7
x− y − 2z = 0

.
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Dynamic programming

One of the most important algorithm design techniques is dynamic programming
(DP for short). The technique is among the most powerful for designing algorithms
for optimization problems that have certain well-defined clean structural properties.
DP is used in problems which solution can be interpreted as a result of a sequence
of decisions (from vertex u go to u1 or u2, put some item in the knapsack or don’t,
. . . ).

� ”Resemblence” with divide-and-conquer method - breaks problems down into
smaller subproblems.

� ”Big difference” - in divide-and-conquer algorithms subproblems are disjoint,
while in DP the subproblems overlap (one subproblem is ”subset” of some
previous subproblem).

Solving problems using dynamic programming rely on two important structural
qualities, optimal substructure and overlapping subproblems.

� OPTIMAL SUBSTRUCTURE . . . this property (sometimes called the princi-
ple of optimality) states that for the global problem to be solved optimally,
each subproblem should be solved optimally.

� OVERLAPPING SUBPROBLEMS . . . while it may be possible to subdivide
a problem into subproblems in exponentially many different ways, these sub-
problems overlap each other in such a way that the number of distinct subpro-
blems is reasonably small, ideally polynomial in the input size. An important
issue is how to generate the solutions to these subproblems. There are two
complementary (but essentially equivalent) ways of viewing how a solution is
constructed.

– TOP-DOWN . . . solution to a DP problem is expressed recursively. This
approach applies recursion directly to solve the problem. However, due
to the overlapping nature of the subproblems, the same recursive call is
often made many times. An approach, called MEMOIZATION, records
the results of recursive calls, so that subsequent calls to a previously
solved subproblem are handled by table look-up.

1
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– BOTTOM-UP . . . Although the problem is formulated recursively, the
solution is built iter- atively by combining the solutions to small sub-
problems to obtain the solution to larger subproblems. The results are
stored in a table.

MEMOIZATION . . . we create table of results of recursive calls, where results obta-
ined for smaller subproblems are used for computing bigger subproblems. We can
use those results multiple times.

Example 1. Fibonacci numbers

F (n) = F (n− 1) + F (n− 2), n ≥ 2,

F (0) = 1, F (1) = 1.

Problem: for given number n ∈ N compute F (n).
PROCEDURE FIBONACCI (n)
BEGIN

IF (n = 0) THEN RETURN(0)
ELSEIF (n = 1) THEN RETURN(1)
ELSE RETURN (FIBONACCI(n− 1) + FIBONACCI(N − 2))

END;
Algorithm complexity is:

T (n) = T (n− 1) + T (n− 1) +O(1)

T (n) ≥ T (n− 1) + T (n− 2), za n ≥ 2

→ T grows at least as fast as the Fibonacci numbers, that is exponentially quickly.
What is the problem? We call recursively many times the same thing, which is then
computed every time.
For instane, for FIBONACCI (6) five times is called FIBONACCI (2), three times
FIBONACCI(3), . . .
MEMOIZATION idea:
PROCEDURE FIBONACCIDP1 (n)
BEGIN

F = [0, 1,∞,∞, . . . ,∞]
FOR i = 2 TO n DO

F [i] = F [i− 1] + F [i− 2]
END;
RETURN(F [n])

END;
Fibonacci numbers aren’t an optimization problem, but they are a good example,

where we see the idea of memoization. We don’t have many same resursion calls,
but rather we remember value for the first call, put it in table, and use it from the
table.
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1.1 Examples

Basic graph concepts have been presented in earlier courses, and so we will present
a very quick review of the basic material for today’s lecture. A graph G = (V,E)
is a structure that represents a discrete set of objects V , called vertices or nodes,
and a set of pairwise relations E between these objects, called edges. Edges may be
directed from one vertex to another or may be undirected.
Observe that multiple edges between the same two vertices are not allowed, but in
a directed graph, it is possible to have two oppositely directed edges between the
same pair of vertices.

Many classical problems can be represented using graphs and problems on them,
for instance, travelling salesman problem . . . ”Given a list of cities and the distances
between each pair of cities, what is the shortest possible route that visits each
city exactly once and returns to the origin city?” It is an NP-hard problem in
combinatorial optimization.

1.1.1 Shortest path

In graph theory, the shortest path problem is the problem of finding a path between
two vertices (or nodes) in a graph such that the sum of the weights of its constituent
edges is minimized.

The problem of finding the shortest path between two intersections on a road
map may be modeled as a special case of the shortest path problem in graphs, where
the vertices correspond to intersections and the edges correspond to road segments,
each weighted by the length of the segment.

There are n cities given (marked by numbers from 1 do n). Between some cities
there are direct connection, but some cities are not directly connected. We can
represent this by graph G, where vertices or nodes are cities, and edges are direct
connections between cities (set E).

� One-way edges are allowed, that is ordered-pair (u, v) means ”road goes from
city u to city v”.

� Every direct connection has a length (price) l(u, v). For instance, gas spent
from city u in the mountain (with altitude 2000 meters) to the city v with
altitude 100 meters (obviously, l(u, v) << l(v, u).
→ directed graph

10 liters

100 liters

u v

We have two problems:
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� For cities u i v, is there a path from u to v? That is a problem ”is graph
connected”, which can be solved using greedy algorithms. We assume that
graph is connected.

� Shortest path from u to v. That means, find sequence of cities u1, u2, . . . , uk

that are directly connected and constitute the path from u to v such that len-
gth of this path is minimum possible (obviously, between two cities can exist
many different paths). Finding solution of this problem can be interpreted as
sequence of decisions:

– in which city u1 go from u?

– in which city u2 go from u1?

...

u u1 u2 uk v

Decisions are obviously not independent.

1.1.2 0− 1 Knapsack

Imagine that a burglar breaks into a museum and finds n items. Let vi denote the
value of the i-th item, and let wi denote the weight of the i-th item. The burglar
carries a knapsack capable of holding total weight M . The burglar wishes to carry
away the most valuable subset items subject to the weight constraint. For example,
a burglar would rather steal diamonds before gold because the value per pound is
better. But he would rather steal gold before lead for the same reason. We assume
that the burglar cannot take a fraction of an object, so must make a decision to take
the object entirely or leave it behind.

We have a knapsack which can carry weight M (that is knapsack of capacity
M). We have n items with its weights and values.
We have to fill this backpack with items.
We need to choose for every item shall we bring it or not, so knapsack is not overfull,
and the prophit is maximal.
More formally, given {v1, v2, . . . , vn} and {w1, w2, . . . , wn} and M > 0 we wish to we
wish to determine the subset T ⊆ {1, 2, . . . , n} (of objects to ”take”) that maximizes∑

i∈T

vi

subject to constraint ∑
i∈T

wi ≤ M.

This is 0− 1 knapsack problem.
xi ∈ {0, 1}, i = 1, . . . , n, means that is we either take one item or we don’t (0 denotes
we didn’t take it).
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� Hard problem, at the moment doesn’t exist polynomial algorithm for solving
this problem.

� Decisions for solving: take i-th item or not. Number of possibilities.: (1 +
1)(1 + 1) · · · (1 + 1) = 2n.

� Idea: by smart choosing reduce number of possibilites that need to be checked.

1.2 DP - ideas

Greedy algorithms - in each step we make the ”best” decision and thus find the
optimal sequence of decisions.
For many problems, it will not be possible to make decisions in individual steps
based only on local information so that the entire sequence of decisions is optimal.

Shortest path We are looking for the shortest path from vertex u to vertex v.
Let us denote by A(u) the set of all cities, i.e. vertices we can reach directly from
the city u.
Which of the cities from A(u) should be next on the shortest path to v? There is no
way to decide this locally without looking at the rest of the graph, and to guarantee
that future decisions lead to the optimal sequence of cities.

u

k

l

v

10

1

5

100

If we expand the problem and search for the shortest paths from u to all other
cities we can reach, we can make a correct decision (for example, Dijkstra’s greedy
algorithm). However, if we look greedily only from u to v, we will not be able to
make a correct decision.

0− 1 ruksak Look at the following example for 0− 1 knapsack.
i wi pi
1 4 3
3 2 2
Shall we take the first item or not? However we decide, we can make mistake. We
don’t know until we see what happened to the other items.

a) M = 5 and we take the first item, i.e. x1 = 1. You can’t take anything else
(M − w1 = 1), so the total prophit is 3. It is better to take the second and
third item, so x1 = 0, x2 = x3 = 1 and the total prophit is p2 + p3 = 4.
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b) M = 4 and we take the first item. Obviously, we did not make a mistake in
this case.

The optimal sequence of decisions (or more of them, if they exist) is reached by
constant direct use of the so-called principle of optimality, if we find such a principle
for our problem (which needs to be proven, but is usually obvious).

Theorem 1 (Principle of optimality, Bellman, 1957 g). An optimal sequence of
decisions has the property that for any initial state and initial decision in that state,
the remaining decisions must form an optimal sequence as seen from the state after
the first decision.

Najkraći put Let’s assume u, u1, u2, . . . , uk, v is shortest path from u to v.

u u1 u2 uk v

v1 vl

If u1, v1, v2, . . . , vl, v would be optimal path from u1 to v (more ”optimal” than
u1, u2, . . . , uk, v), then u, u1, v1, v2, . . . , vl, v would be more ”optimal” path from u to
v then u, u1, u2, . . . , uk, v, and that is contradiction.

0− 1 ruksak It is obvious that principle holds.

Remark 1.

If the first decision was wrong, further optimality will not lead to an optimal solution.
The issue of optimizing the first decision still remains, but only according to the
optimal sequences after that decision.

Global sequences that have non-optimal subsequences are certainly not optimal if
principle of optimality is found.

1.3 Shortest path

We have shown that the principle of optimality is valid for this problem and is
formulated with the length of the shortest path. DP, i.e. the principle of optimality
rejects all non-optimal paths from u1 to v, where

u → u1 → · · · → uk → v.

Our algorithm for finding the shortest path from u to v therefore looks like this:

� cities u1 may be more and all those initial decisions should be checked, because
we do not know which one is optimal.

� from any u1 we need to find the shortest path to v.
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� take the shortest total path through all u1

Let’s denote by ld(u, v) the length of the optimal path from u to v, for any two
cities, i.e. vertices u, v (ld, stands for least distance).

→ ld(u, v) = min
u1 such that(u,u1)∈E

{l(u, u1) + ld(u1, v)}.

Remark 2. � Finding the shortest path from u1 to v does not depend on the
decision in the first step, it is a problem that we solve independently without
knowing that we have chosen u1 from u — PRINCIPLE OF INVARIANCE.

� The problem of finding the shortest path from u1 to v is a problem of the same
type as the starting problem, only with other cities (”ld(u1, v) ⊆ ld(u, v)”) –
OVERLAPPING PRINCIPLE. We can apply the same algorithm recursively
for the subproblem.

If we denote u0 = u, in every step following is valid

ld(uk, v) = min
uk+1 such that (uk,uk+1)∈E

{l(uk, uk+1) + ld(uk+1, v)}.

Our algorithm will be solving the problem backward, from v (more natural), i.e.
using BOTTOM-UP method.
At the end of the paths are those vertices that are directly connected to v, i.e. for
which

ld(uk, v) = l(uk, v)

is valid, and that is the given data.
There are at most n − 1 steps (because there are n cities), and we stop when we
backward come across uk = u.
Obviously, there must be no repetition of cities on the path, i.e. cycles in the graph
(due to the minimality of the path).
During realization, we assume that the given directed graph is layered, i.e. the ver-
tices are divided into m+ 1 disjoint sets, m ≥ 1.
We denote those sets by V0, V1, . . . , Vm.
Direct connections exist only between vertices in adjacent layers Vk, Vk+1 (and not
every pair has to be connected).
We will look at the following example

1

2

3

4

5

6

7

8

9

2

3

7

44

6

9

6

8

6

3

4

5

7

8
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Sources . . . nodes from V0.
Sinks . . . nodes from Vm.
The problem in the layered graph states: for a given source u ∈ V0 and sink v ∈ Vm

find shortest path ld(u, v).
The advantage of layers: each path from the source to the sink has exactly m
sections, i.e. one node in every layer.
The recursive equation becomes

ld(uk, v) = min
uk+1∈Vk+1 such that (uk,uk+1)∈E

{l(uk, uk+1) + ld(uk+1, v)}

for k = 0, 1, . . . ,m− 2, with distances for last two layers

ld(um−1, v) = l(um−1v), for all um−1 such that (um−1, v) ∈ E.

Example 2. In example find ld(1, 9).

Rješenje. 1 → 2 → 5 → 7 → 9, ld(1, 9) = 16.

1.3.1 Algorithm

We use one vertex from the first and last layer, so we can assume |V0| = |Vm| = 1.

� Vertices in layers are numbered in order by layer from 1 to n, where the source
number is 1, the sink number is n, and the vertices from layer Vk+1 have bigger
number then vertices from layer Vk.

� Beside length of the optimal path, we want additionally from the algorithm
vertices of which that path consists.

� We are looking for ld(1, n).

Input is layered graph with m + 1 layers, n vertices indexed in ascending order by
layers. Obviously, it is sufficient to specify E set of edges along with d : E → R+

0 ,
length of vertices.
The output is a field P with m elements with indices of vertices (cities) on the
shortest path from 1 to n, and l the length of the shortest path.
ld is the field of values shortest paths from node j to node n.
Algorithm - pseudocode
FUNCTION MIN-PATH (E,m, n, d : E → R+

0 )
BEGIN

ld(n) = 0;
FOR j = n− 1 TO 1 DO
BEGIN

find node r such that (j, r) ∈ E and d(j, r) + ld(r) is minimal over all such r
ld(j) = d(j, r) + ld(r) . . . shortest path from j to n
ind(j) = r . . . number of following node from node j

in the shortest path from j to n
END;
l = ld(1);
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P (1) = ind(1);
FOR j = 2 TO m DO
BEGIN

P (j) = ind(P (j − 1));
END;
RETURN(l);
RETURN(P);

END;

Example 3. In example:
n = 9,m = 4.
ld(9) = 0
j = 8 → ld(8) = 8 ind(8) = 9
j = 7 → ld(7) = 7 ind(7) = 9
j = 6 → ld(6) = 5 ind(6) = 9
j = 5 → ld(5) = 4 + ld(8) = 12

3 + ld(7) = 10 ind(5) = 7
6 + ld(6) = 11

j = 4 → ld(4) = 8 + ld(8) = 16
6 + ld((7) = 13 ind(4) = 7
9 + ld(6) = 14

j = 3 → ld(3) = 6 + ld(5) = 16 ind(3) = 5
4 + ld(4) = 17

j = 2 → ld(2) = 4 + ld(5) = 14 ind(2) = 5
7 + ld(4) = 17

j = 1 → ld(1) = 3 + ld(3) = 19
2 + ld(2) = 16 ind(1) = 2

l = ld(1) = 16
P (1) = ind(1) = 2
P (2) = ind(P (1)) = ind(2) = 5
P (3) = ind(P (2)) = ind(5) = 7
P (4) = ind(P (3)) = ind(7) = 9

→ P = [2, 5, 7, 9], l = 16

In the following, we can see optimal path from vertices in layers (red edges, from
sink v to source u)
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1.3.2 Complexity

Finding node r so that l(j, r) + ld(r) is minimal:

� If we represent graph, i.e it’s edges, with adjancency list, we search for all
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vertices connected to j. The duration is proportional to the degree of that
vertex.

� As we go through all vertices, the total duration is proportional to the number
of edges |E| = e, i.e. O(e).

� This search goes into a loop. We add O(n) time for the → O(n+ e).

� At the end (the last FOR loop) we spend O(m) time, but since m < n it is
already covered by O(n).

� The total time is
O(n+ e).

Remark 3. The principle of optimality can be formulated from front

A(v) = {w ∈ V : (w, v) ∈ E}.
ld(u, v) = min

w∈A(v) such that (w,v)∈E
{ld(u,w) + l(w, v)}.

1.4 Unbounded integer and 0− 1 knapsack

We have n items with weights wi and values (prophit) pi.
We have a knapsack with a capacity of M .
We consider two cases (in both we are not allowed to cut items, i.e. xi ∈ N0): we
have infinitely many of each object and we have only one of each object (we can
take it or not).
Dynamic programming is usually described in 4 steps.

1.4.1 Unbounded integer knapsack

When we say integer knapsack, we assume we are talking about unbounded integer
knapsack.

1. step - optimal choice of subproblems

Obviously, the optimal choice of the subproblem is the problem of an unbounded
integer knapsack, but with a smaller capacity (smaller knapsack → slightly larger
→ . . . ).
If (x1, x2, . . . , xn) is the optimal solution for capacity M , then (x1, . . . , xi−1, xi −
1, xi+1, . . . , xn) is optimal solution for M − wi (principle of optimality). Note that
(x1, . . . , xi−1, xi − 1, xi+1, . . . , xn) means that we have taken one object xi (i.e. put
it in a knapsack), so the capacity has dropped to M − wi.

2. step - recursive formula

We need to find a recursive formula for the value of the optimal solution.
We denote:
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KNAP (M) . . . the optimal value for the capacity of M .

KNAP (M) = max
i∈{1,...,n} such that wi≤M

{KNAP (M − wi) + pi}.

Note that if we have taken the subject i, we must add pi to the valueKNAP (M−wi).
Obviously, for the initial value we take M = 0, i.e. KNAP (0) = 0 (there is no
subject i i.e. wi ≤ 0).
It makes no sense to put an item worth 0 in your knapsack, we don’t look at such
items.

3. step - algorithm using dynamic programming

Algorithm - pseudocode
FUNCTION NEO-KNAPSACK (M,n,W, P )
{ the input is the capacity M , number of elements n, weight of the elements in the
field W , and value of elements in the field P }
BEGIN
{ first initialization of field K }

K(0) = 0;
FOR i = 1 TO M DO . . . capacity from the smallest 1 to the largest M
BEGIN

K(i) = 0; . . . for each capacity we initially set the optimal value 0
FOR j = 1 TO n DO . . . as we have infinitely many of each item in every step

of the for loop we check for each item
BEGIN

IF wj ≤ i DO
{ if item j is heavier then the capacity, we don’t take it in the knapsack }

K(i) = max{K(i), K(i− wj) + pj}
{ if we get a bigger value by taking item j, we have to update K(i) }
{ note, if K(i) is not updated, that means we didn’t take item j }

END;
RETURN(K(M));

END;
Complexity: obviously O(n ∗M).

4. step - additional information

The algorithm can also return some additional information. In this case, it is natural
to return which items are taken in the knapsack for an optimal solution.
The output is additionally field ITEMS of items taken in the optimal solution.

FUNCTION NEO1-KNAPSACK (M,n,W, P )
{ the input is the capacity M , number of elements n, weight of the elements in the
field W , and value of elements in the field P }
BEGIN
{ first initialization of fields K and ITEMS }

K(0) = 0;
ITEMS(0) = ∅; . . . initially for capacity 0 we didn’t take any item in the optimal
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solution
FOR i = 1 TO M DO . . . capacity from the smallest 1 to the largest M
BEGIN

K(i) = 0; . . . for each capacity we initially set the optimal value 0
FOR j = 1 TO n DO . . . as we have infinitely many of each item in every step

of the for loop we check for each item
BEGIN

IF wj ≤ i DO
{ if item j is heavier then the capacity, we don’t take it in the knapsack }

K(i) = max{K(i), K(i− wj) + pj}
{ ifK(i) is updated, i.e. we took item j, then ITEMS(i) = ITEMS(i−

wj) ∪ {j} }
END;

RETURN(K(M));
RETURN(ITEMS(M));

END;

Example 4. Let the capacity of the knapsack be M = 5 and we have 4 items
available: w1 = 1, p1 = 1, w2 = 2, p2 = 4, w3 = 3, p3 = 6, w4 = 4, p4 = 7, tj.
i wi pi
1 1 1
2 2 4
3 3 6
4 4 7
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i = 1 j = 1, w1 = 1 ≤ 1 K(1) = max{K(1), K(1− 1) + p1} = 1
ITEMS(1) = ITEMS(0) ∪ {1} = {1}

j = 2, w2 = 2 > 1
i = 2 j = 1, w1 = 1 ≤ 2 K(2) = max{K(2), K(2− 1) + p1} = 2

ITEMS(2) = ITEMS(1) ∪ {1} = {1, 1}
j = 2, w2 = 2 ≤ 2 K(2) = max{K(2), K(2− 2) + p2} = 4

ITEMS(2) = ITEMS(0) ∪ {2} = ∅ ∪ {2} = {2}
j = 3, w3 = 3 > 2

i = 3 j = 1, wi = 1 ≤ 3 K(3) = max{K(3), K(3− 1) + p1} = 5
ITEMS(3) = ITEMS(2) ∪ {1} = {2, 1}

j = 2, w2 = 2 ≤ 3 K(3)max{K(3), K(3− 2) + p2} = 5
j = 3, w3 = 3 ≤ 3 K(3) = max{K(3), K(3− 3) + p3} = 6

ITEMS(3) = ITEMS(0) + {3} = ∅ ∪ {3} = {3}
j = 4, w4 = 4 > 3

i = 4 j = 1, w1 = 1 ≤ 4 K(4) = max{K(4), K(4− 1) + p1} = 1
ITEMS(4) = ITEMS(3) ∪ {1} = {3, 1}

j = 2.w2 = 2 ≤ 4 K(4) = max{K(4), K(4− 2) + p2} = 8
ITEMS(4) = ITEMS(2) ∪ {2} = {2, 2}

j = 3, w3 = 3 ≤ 4 K(4) = max{K(4), K(4− 3) + p3} = 8
j = 4, w4 = 4 ≤ 4 K(4) = max{K(4), K(0) + p4} = 8

i = 5 j = 1, w1 = 1 ≤ 5 K(5) = max{K(5), K(5− 1) + p1} = 9
ITEMS(5) = ITEMS(4) ∪ {1} = {2, 2, 1}

j = 2, w2 = 2 ≤ 5 K(5) = max{K(5), K(5− 2) + p2} = 10
ITEMS(5) = ITEMS(3) ∪ {2} = {3, 2}

j = 3, w3 = 3 ≤ 5 K(5) = max{K(5), K(5− 3) + p3} = 10
j = 4, w4 = 4 ≤ 5 K(5) = max{K(5), K(5− 4) + p4} = 10

→ K(5) = 10, ITEMS(5) = {2, 3}.

In addition, we only need a one-dimensional field (or, for example, a row matrix)
from which we read the previous optimal solutions (for subproblems).
i 0 1 2 3 4 5
ITEMS(i) ∅ {1} {1, 1} {2, 1} {3, 1} {2, 2, 1}

{2} {3} {2, 2} {3, 2}
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LESSON 1: INTRODUCTION TO ORTHOGONAL AXONOMETRY METHOD 

INTRODUCTION TO DESCRIPTIVE GEOMETRY 

The Monge method 

In descriptive geometry, objects are projected onto 2D surface where one can extract their significant 

properties from 3D space. On the other hand, using 2D projections, one can visualize its 3D shape. In 

modern technologies, these procedures have additional advances since by a fast changing of parameters 

of projections one can simulate moving an object and see all its sides from different views, all on 2D 

surface of a monitor. 

Original method of descriptive geometry is named after French mathematician Gaspard Monge (1746-

1818) who developed it and is nowadays known as the Monge method. 

In recognition of his contribution, his name is inscribed among 72 names of French scientists, engineers 

and mathematicians on the base of the Eiffel Tower. 

 

 

 

 

 

 

 

 

 

The 

Monge method is implemented in almost all 3D-CAD programmes since it is very applicable in computer 

modelling of various objects and is a compulsory part of the education of the future engineers. 

 

 

 

The method is based on the orthogonal projection of an object in 3D space onto two or more planes of 

projection.  



 

 

 

 

 

 

Here we see the horizontal (top view) and the vertical (front view) planes of projections. The vertical one 

assumes the role of the 2D surface for the space interpretation: all the contents of both planes is finally 

presented in the vertical one, by a 90° rotation of the horizontal one. Notice that all of the rays are 

mutually parallel and are orthogonal on the planes of projections.  

We can also add the side view orthogonal projection in the third plane of projections, which is 

perpendicular to the horizontal and to the vertical one. 

To illustrate the scope of the method we give examples of simple solids with their three orthogonal 

projections including its top, front and (right) side view. 

 

 

 

 

 

 

 

 

 

As we can see, the method develops the whole variety of procedures which lead to a final goal of the 

construction and a variety of spatial properties are constructed according to the strict laws of the method 

itself. 

Axonometry methods  

With the Monge method as the starting point, many other methods in descriptive geometry are 

developed. Axonometric methods e.g. present an object together with its coordinate system and by 

parallel rays project both onto the 2D surface. Thus we get a complete 3D image of an object on a unique 

plane of projection. Axonometric methods have their specific advances in engineer practice, but also 

originate from the Monge method and then branch in different sub-methods. 



In general, rays of projection can be laid in different angles toward the plane of projection but are always 

mutually parallel: 

 

 

 

 

Thus we 

get an oblique parallel projection of an object together with its coordinate system: 

 

 

 

 

 

 

 

 

 

The orthogonal coordinate system with the orthogonal projections of the pyramid serves as a starting 

point in constructing its 3D image in the oblique axonometry. The coordinate system follows the pyramid 

in the axonometric image and loses its orthogonality, but parallel lines stay parallel. 

As we can see, we observe the pyramid with a right side view and vary the axes of view from above and 

from below. 

Here are the oblique axonometric images of two different objects observed from above. 

 

 

 

 

 



ON ORTHOGONAL AXONOMETRY 

If the rays of the parallel projection are orthogonal to the plane of projection, axonometry method is 

called orthogonal axonometry. The main task here is to project the coordinate system orthogonally to the 

plane of projection. Former planes of projection that are determined by the x, y and z axes, for the top, 

the front and the side view in the Monge method are now together orthogonally projected on the single 

plane of projection in axonometry. 

 

 

 

 

 

 

 

Since these planes of projection are brought into the new coordinate system, lines rxy, rxz and ryz are 

their traces in the plane of projection in orthogonal axonometry. The specific triangle △XYZ is called a 

trace triangle. The orthogonal projections of the axes are orthogonal on the traces rxy, rxz and ryz. Hence 

we have the axes as the heights and the origin as the orthocenter of the constructed trace triangle. 

 

 If  we want to see true dimensions of an object in order to have its orthogonal axonometry 3D image, 

standard procedure implies revolution of the plane in which one of the basis of the object lays. The 

revolution is done into the plane of projection, around the trace of the plane in which the basis is layed. 



Since we locate the bases of objects in one of the three coordinate planes, we have the following variants 

of the revolution. 

  

 

 

 

 

 

 

 

 

 

 

Sometimes it is enough to do 90° rotation into the plane of projection, for example, if we want to 

construct the true length of the height of an object. 

 

 

 

 

 

 

 

 

 

 

We can carry out the step-by-step construction of an orthogonal axonometric image of a point in 

GeoGebra.  

 



 

Similar procedures are used for the construction of a quadrilateral pyramid given in the following 

picture. Here the height of the pyramid is obtained by the rotated position of the z-axis. 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Orthogonal axonometric image of a circle demands a specific way of construction. In parallel projections 

of different types, circles degenerate into ellipses, in general. In some special cases, when circles are laid 

parallel to the plane of projection, they are projected as circles. 



Ellipse, as an orthogonal axonometric image of a circle, demands the construction of its major and its 

minor axis. The major axis originates from the diameter of the circle which is parallel to the plane of 

projection and the minor axis originates from the diameter which is perpendicular to the first one. 

Besides the axes of an ellipse we always use the pair of its conjugate diameters which are parallel with 

the coordinate axes in the corresponding plane of the circle. Regarding the position of the circle in the 

following picture, we use diameters parallel to y and z axes.  

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, as it was done with the pyramid, one can construct a solid with the circle in the basis, e.g. a 

conus, as in the following example. The circle is located in the xy - plane.  

 

 

 

 

 

 

 

 

On the other hand, one of the bases of a cylinder is located in xz – plane. 



 

 

 

 

 

 

 

Finally, one can easily construct a half-sphere using the similar construction of the main circle section of 

the sphere. 

 

 

 

 

 

 

 

 

 

The contour circle of the half-sphere has the same radius as the main circle itself which makes the 

construction in orthogonal axonometry simplified. 

That is the reason why this method is often applied to constructions of the domes in architecture.  

Three main types of domes in architecture 

Taking into account that the contour circle of the sphere stays with the same radius in orthogonal 

axonometry as in its true length, it is much easier to construct all of the spherical elements and also the 

transitional ones when leaning the various types of dome vaults down onto the quadratic (rectangular) 

basis. Three main types of domes in architecture are spherical, bohemian and pendentive domes. These 

are simultaneously presented by their pairs of orthogonal projections where the geometric elements of 

their architectural concept can be properly recognized. 

The spherical dome is constructed over the square basis of an object. 

Given a trace triangle and two orthogonal projections of a spherically vaulted object with a square basis 

one can construct the orthogonal axonometric image of the corresponding spherical dome. 



 

 

 

 

 

 

 

 

The procedure is following. Firstly we rotate around the first trace of the trace triangle in the plane of 

projections and determine the true dimension of the basis square. According to the rules of orthogonal 

axonometric projection, we carry out the projection of the basis square, as a parallelogram. Then we draw 

the contour circle of the dome with the true length of the given sphere radius. What follows is the 

construction of ellipses as projections of circles in the vertical planes (parallel in pairs): major axis, minor 

axis, the highest point and two points on the square for each (half)-ellipse in the vertical plane. The final 

step is visualization and drawing the arcs of the spherical dome, according to its spatial visibility. 

National library of France in Paris serves as an example of an implementation of spherical domes in 

architecture. 

 

 

 

 

 

 

 

 

 

 

 

A pendentive dome is a spherical dome upgraded by a half-sphere and supported by pendentives or 

spherical triangles. It can be obtained by upgrading a spherical one by an additional half-sphere. 



 

 

 

 

 

 

 

 

The center of the horizontal circle section of the half-sphere is located on the z – axis. The true length of 

the radius of the half-sphere is determined. The half-sphere is constructed as was described in the text. 

The accent is put on the common points of the half-sphere and the spherical dome, i.e. on the constructed 

spherical triangles-pendentives. The visibility of the constructed pendentive dome is finally determined. 

Numerous pendentive domes were built in Istanbul and the most famous example is Hagia Sophia. 

 

 

 

 

 

 

 

 

 

Finally, a bohemian dome is constructed over the rectangular basis of an object. Given a trace triangle and 

two orthogonal projections of a spherically vaulted object with a rectangular basis, one can construct the 

orthogonal axonometric image of the corresponding bohemian dome.  

 

 

 

 

 

 

 

 



A nice example of a bohemian dome is the Church of Saint Matthew in Split, Croatia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LESSON 2: ORTHOGONAL AXONOMETRY OF VARIOUS OBJECTS 

The second lesson on orthogonal axonometry is a continuation of the previous one. It is primarily based 

on the construction process and the discussion of the number of possible solutions, which is one of the 

main purposes of descriptive geometry: how to see and understand 3D relations and their appearance on 

2D surface.   

Making use of formerly described elementary techniques related to this method, step-by-step 

constructions are carried out in GeoGebra.  

Construction of a square. Upgrading a pyramid and a prism over the square basis 



A square serves as the first example of an object which demands its true dimensions in one of the rotated 

planes (here xy- coordinate plane) and is afterwards projected as a parallelogram in orthogonal 

axonometry. 

 

 

 

 

 

 

 

 

Upgrading the square by the height of a solid (another previously described construction) leads to a 

regular quadrilateral pyramid. Here the 90° rotation of the z-axis is used.  

 

 

 

 

 

 

 

 

Another possibility for upgrading a solid over the same square base is a regular quadrilateral prism. Both 

solids demand the construction of the height, but differ in the process of determining visibility of their 

sides with the similarly given view axis. 



 

Construction of an angular object in GeoGebra 

A more complex task is the construction of the orthogonal axonometric image of a non-regular angular 

object, which is given in its front and its top view of orthogonal projections. 

The technique of the construction demands similar steps as before, but here the accent is on how 

accurately one can determine or visualize the true shape of the object. 

Once the object is defined considering the visibility of its edges, i.e. its sides in 3D image, the construction 

of its orthogonal axonometry may begin. 

The step-by-step construction in GeoGebra is done in detail. 

 

 

 

 

 

 

 

 

The final step is analysing the number of solutions. Namely, often with only two orthogonal projections 

of an object one can derive more than one possible 3D shapes that correspond to them. Moreover, some 

tasks can provide numerous solutions. In this manner, students can significantly develop their space 

visibility skills. 

 

 



QUIZ   ("Exit tickets") 

1.  Using the template in GeoGebra, students are asked to draw the orthogonal axonometric 3D 

image of an object given by two orthogonal projections. 

2. Using the template in GeoGebra students are asked to draw the right side view of an object given 

by two orthogonal projections and to find as many as possible solutions to the given task.  

3. Students are given photos of a few examples of domes in the world architecture and are asked to 

determine the type of domes (spherical, pendentive or bohemian) for each example. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



EXIT TICKET 

ORTHOGONAL AXONOMETRY 

1. For each given object choose the type of dome which it contains: 

 
 

s  
 
 
 
 
 
 
 
 
 
 
 
 

Daut Pasha Hamam, Skopje, N. Macedonia 

 

a) pendentive dome 
b) spherical dome 
c) bohemian dome 

 
 
 
 
 
 

Saint Clement of Ohrid, Skopje, N. Macedonia 

 

a) pendentive dome 
b) spherical dome 
c) bohemian dome 



 
 
 

Macedonian Philharmonic, Skopje, N. Macedonia 

 

a) pendentive dome 
b) spherical dome 
c) bohemian dome 

 
 
 

 
Mustafa Pasha Mosque, Skopje, N. Macedonia 
 

 

a) pendentive dome 
b) spherical dome 
c) bohemian dome 

 

  



2. For a given object, choose the correct top and front view obtained by orthogonal projections: 

 
 
 
 
 

 
 

Top view: 

    
    
    
    

 

    
    
    
    

 

    
    
    
    

 

    
    
    
    

Front view: 

    
    
    
    

 

    
    
    
    

 

    
    
    
    

 

    
    
    
    

 
 

3. Select the objects to which the given top and front orthogonal view correspond: 
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